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Abstract Supervised machine learning methods to model word sense often rely on human
labelers to provide a single, ground truth label for each word in its context. As part of an
effort to create a community resource of sense annotations, we examine issues in estab-
lishing a single, ground truth word sense label using a fine-grained sense inventory. Our
data consist of a sentence corpus for ten moderately polysemous words, and multiple sense
labels (or multilabels) for 100 instances per word from trained and untrained annotators.
Using a suite of asessment metrics to analyze the sets of multilabels, we conclude that the
general annotation procedure is reliable, but that words differ regarding the reliability of
their sense inventories, independent of the number of senses. In addition, we investigate
the performance of an unsupervised machine learning method to infer ground truth labels
from various combinations of labels from trained and untrained annotators. We find tentative
support for the hypothesis that performance depends on the quality of the set multilabels,
independent of the number of labelers or their level of training. Both sets of results indicate
that whether words can be assigned ground truth sense labels depends less on the granularity
of the sense inventory and more on other word-specific properties, such as their contexts of
use, and the nature of the sense inventories and sense relations.

Keywords Word sense annotation - multilabel learning - inter-annotator reliability

1 Introduction

Most words have multiple meanings. In all natural languages, open class words (word
classes whose membership is not fixed and where new words can be coined, borrowed,
or derived), and many closed class words (such as prepositions), are more often polysemous
than not. Many proposals exist for characterizing word sense in computational linguistics,
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and there are no widely agreed upon standards for determining the number of senses for any
given word. Rather, the representation one chooses for word sense is an abstraction that de-
pends on one’s theoretical or application goals. Yet resolving word sense is a prerequisite to
any Natural Language Processing task that depends on utterance meaning. The fine-grained
sense inventories preferred by lexicographers have been argued to lead to relatively lower
annotation reliability when compared to coarse-grained inventories, in measures of agree-
ment among two or three human labelers (annotators).

We present the results of an investigation of manual annotation of word sense for a het-
erogeneous corpus of present day English that relies on WordNet, a widely used lexical re-
source, that shows that annotators can agree well depending on the word. The work reported
here is part of the Manually Annotated SubCorpus (MASC), a project to create a subset
of the American National Corpus (ANC) annotated for many types of linguistic informa-
tion [1]. The ANC is a large collection of present-day American English from many spoken
and written genres.' It consists of 22 million words to date, nearly two thirds of which can
be freely distributed (Open American National Corpus: OANC). MASC is a 500,000 sub-
set of the OANC including equal portions of nineteen genres, which have been manually
annotated or validated for fourteen types of annotation. One of the goals of MASC word
sense annotation is to support efforts to align the sense distinctions made in WordNet [2]
and FrameNet [3], as well as to facilitate investigation of alternative forms of word sense
annotation and representation.

As described below, MASC word sense annotation follows best practice for creating a
ground truth corpus. However, we assume that this methodology requires re-examination,
in particular for word sense annotation. The key issue is how to arrive at a single ground
truth label, given that different well-trained annotators and experts who often agree on a
label, can also disagree, due to genuine differences in interpretation associated with specific
instances. For example, of the 100 instances of adjectival fair in our data, there are 69 where
at least one annotator selected sense 1 from WordNet. In 44 of these cases (64%), sense
1 is selected by nearly all five of the MASC annotators who worked on fair. In 6 of the
cases (9%), annotators were split 2-to-3 between senses 1 and 2. (In the remaining 27%
of cases, at least one annotator chose one of the eight other possible senses.) In WordNet,
sense 1 is glossed as free from favoritism or self-interest or bias or deception; ..., and one
of its synonyms is just (an evaluative sense). Sense 2 is glossed as not excessive or extreme
(a scalar sense), and one of its synonyms is reasonable. Whether a circumstance brings up
issues of justice versus reasonableness is often a matter of opinion, thus leading to different
interpretations, as in this example where the project annotators (Al, A2, etc.), plus one
expert (E1), are split evenly between the two senses:

Annotators
Al A2 A5 A7 A8 EI
Senses s1 sl s2 s2 52 sl

1. And our ideas of what constitutes a fair wage or a fair return on capital are historically
contingent.

We believe the cases of near ties between these two senses of fair reflect an inherent open-
endedness in the interpretation, rather than poor annotator performance or poor annotation
methods. Data from multiple annotators reveals such instances in a way that fewer labels
per instance cannot.

I http://www.anc.org



Our investigation addresses two questions about manual word sense annotation. Their
combined results suggest that whether a word can be assigned a ground truth sense label
depends less on the granularity of the sense inventory and more on other word-specific prop-
erties. The first question is how to collect word sense labels from trained or untrained an-
notators for moderately polysemous words. To investigate this question, we collected labels
from approximately half a dozen trained annotators per instance, which yields a multilabel
(a set of labels from different annotators) for each instance; the multilabel for example 1) is
(sl, s1, s2, s2, s2, s1). Our assessment measures on the multilabels from trained annotators
indicate that the annotation procedure is reliable, but that words differ regarding the ability
of annotators to apply sense labels reliably. The second question is how to assign a single
ground truth label for each word, given a multilabel. Recently there has been increasing in-
terest within the NLP community in carrying out annotation efforts through crowdsourcing,
which is the collective effort of a group of individuals. To examine the tradeoffs in relying
on fewer trained annotators versus more untrained annotators, we collected additional labels
for a subset of words, using twice as many untrained annotators as trained annotators. We
then applied an unsupervised machine learning method to infer a ground truth label for each
instance from several types of multilabel sets, using various combinations of labels from
trained and untrained annotators. The results indicate that an expert quality labeling can be
learned from a set of multilabels, but performance seems to depend in part on the quality of
the multilabels, rather than solely on the number of annotators or their level of training.

The paper is structured as follows. Section 2 presents related work. Section 3 describes
the ten words investigated here. Section 4 presents our assessment metrics, and section 5 as-
sesses the sets of multilabels from trained and untrained annotators. In section 6, we present
experiments using an unsupervised machine learning method to learn ground truth labels
from various sets of multilabels. We conclude with a discussion (section 7) and a summary
of our results and open questions for the future (section 8).

2 Related Work

Word meaning has been variously represented in lexicography, linguistics and computational
linguistics. Approaches include providing detailed sense hierarchies for a given word (as in
conventional dictionaries), WordNet’s ordered inventory of sets of synonyms plus sense def-
initions, one or more components of a conceptual frame as in FrameNet [4], a decomposition
into logical predicates and operators [5], a cluster of sentences where a word in all of them
has the same meaning (as argued for in [6]), or some combination of the above. vRecent
work by Erk and colleagues builds on the view that a sense can be defined as the contexts
it occurs in [6], or, more specifically, as regions in a vector space model [7]. Vector space
models, such as Latent Semantic Analysis [8], represent a word as an N-dimensional vector
(tensor) of contextual dimensions (e.g., a 2-dimensional matrix of sentences by documents).
Words with more similar contexts have similar vector representations, thus similarity of
vectors captures semantic similarity. Erk and McCarty [9] rely on WordNet senses for an
annotation method they refer to as graded sense assignment, in which annotators assign a
score to each sense for every annotation instance. The MASC annotation task also relies
on WordNet senses for sense labels. Because we collected multilabels for round 2.2, and
a multilabel gives a distribution over the sense labels for a given word, this distribution is
analogous to the graded sense assignment in [9]. Since all sentences for a given lemma are
annotated at the same time, and the WordNet senses include glosses along with definitions
(see next section), this task is similar to grouping instances by their similarity to the glosses.



There has been a decade-long community-wide effort to evaluate word sense disam-
biguation (WSD) systems across languages in several Senseval efforts (1998, 2001, 2004,
2007 and 2010; cf. [10-15]), with a corollary effort to investigate the issues pertaining to
preparation of manually annotated gold standard corpora [13]. Differences in inter-annotator
agreement and system performance across part-of-speech have been examined for two to
three annotators [13, 16]. Investigations of factors that might affect human and system per-
formance have looked at whether each annotator is allowed to assign multiple senses [17-
19], the number or granularity of senses [16], merging of related senses [20], how closely
related they are [21], sense perplexity [22], and entropy [22,13]. Similarly, there have been
studies of how distinguishable sense are for systems [23,24] or humans [25,26]. As noted
below, we find a tentative part-of-speech effect for the 10 words studied here that is not
borne out for the full set of MASC words. We do not find significant correlations of anno-
tator agreement the number of senses with agreement, and only a modest correlation with
the number of senses used, depending on the agreement metric. What other studies fail to
consider, and that we find here, is that the general annotation procedure is reliable, but that
specific words differ regarding the ability of annotators to apply the sense inventory reliably,
independent of the part-of-speech or number of senses.

Previous work has suggested alternatives to pairwise agreement or the x family of agree-
ment coefficients for assessing human annotations [9], automated word sense disambigua-
tion [23], or both. In Erk & McCarthy’s graded sense assignment [27], every sense in a
word’s inventory is assigned a grade on a 5 point scale. To evaluate graded sense assign-
ments from human annotators, and automated word sense disambiguation (WSD) against
the human data, they consider a range of metrics including Spearman’s correlation coef-
ficient, precision and recall, and Jenson Shannon Divergence (JDS), a distance metric for
two probability distributions. For each annotated instance, every sense in the inventory is
assigned a rating. Because individual annotators tend to be biased towards higher or lower
ratings, they use JSD to provide a measure of distance that abstracts away from the absolute
values assigned. They explicitly do not interpret the distribution of ratings as a probability
distribution over the senses. This is in contrast to a suggestion from Resnik and Yarowsky
to use cross entropy, which is related to JSD, to evaluate WSD systems that output a prob-
ability score for each available sense from the inventory [23]. They motivate their proposal
in two ways: first, that even when incorrect, systems should get partial credit for assigning
a relatively higher probability to the correct sense, and second, that a probabilistic result fits
in well with downstream processing that relies on probabilities. Our use of JSD and similar
metrics differs from both. As discussed below, we compare annotators’ sense distributions
on the assumption that each sense has a certain likelihood that should be roughly equivalent
to its likelihood in each annotator’s sense assignments.

We collected labels from multiple annotators in part to reveal differences across words
with respect to annotator behavior. This has been used previously for coference phenom-
ena: Poesio and Artstein [28] analyzed annotations from 18 annotators doing coreference
annotation to detect contexts where annotators disagree because the context is ambiguous or
vague. We believe the cases of disagreement described in the introduction, where annotators
were split 50/50 between two word senses, are related to the cases of ambiguity or vagueness
discussed by Poesio and Artstein. When there is data from many annotators, cases of dis-
agreement can be more confidently identified as instances where no one referent (as in [28])
or no one word sense (as in our data) is significantly more probable than all others.

Recent work has examined how to leverage word sense data from multiple untrained an-
notators, using words with very few senses [29] [30]. Snow et al. included a word sense dis-
ambiguation task among several annotation tasks presented to Amazon Mechanical Turkers



in which annotators were required to select one of three senses of the word president for 177
sentences taken from the SemEval Word Sense Disambiguation Lexical Sample task [31].
They show that majority voting among three annotators reaches 100% accuracy in compari-
son to the SemEval gold standard, after correcting a single apparent disagreement where the
expert annotation turned out to be incorrect. Many approaches to learning from crowds ap-
ply a probabilistic framework, and incorporate differences in annotator expertise [32], item
difficulty, or both directly into the model [33]. Rayker et al. [34] propose a Bayesian frame-
work to estimate the ground truth and learn a classifier. One of their contributions is the
extension of the approach from binary to categorical, ordinal and continuous labels. None
of this work has combined learning from multilabels with assessments of them. We use the
method in [33], because it models both annotator expertise and instance difficulty, factors
that affect the quality of the sets of multilabels used here. To our knowledge, no one has
attempted to compare trained annotators with crowdsourcing for word sense annotation.

3 Word Sense Annotation Data: Multiple Annotators

The most common components of best practice to create an annotated resource in NLP are
development of annotation guidelines; training the annotators; documenting inter-annotator
reliability for a representative subset to demonstrate that the annotation can be applied con-
sistently, or to verify that specific annotators are reliable, or both. For the full word sense
corpus, trained MASC annotators have participated in ten annotation rounds to date, with
approximately ten words per round, and 1000 sentences per word. Each round began with
a small sample of 50 to 100 sentences used for training annotators on the labels for new
words, and for re-consideration of the word sense labels in case they needed revision; the
pre-annotation samples are not included in the 1000 sentences per word. For most rounds,
annotator reliability was assessed using two to four annotators on 100 sentences per word,
randomly selected from the 1000 sentences. The data described here consists of annotations
for ten words for one round from half a dozen trained annotators from the MASC project,
plus annotations of three of these words collected from fourteen untrained annotators re-
cruited through Amazon Mechanical Turk (AMT), and from expert annotators.

3.1 Availability of the Data

The MASC corpus and word sense data are available from the MASC downloads page.? The
round 2.2 data from MASC annotators investigated here is already available for download as
part of the WordNet sense annotations and interannotator agreement data. It includes MASC
word sense rounds 2 through 5. The annotations from turkers and experts will be included in
future MASC releases, along with data from the remaining rounds of word sense annotation.

3.2 MASC Data: Trained Annotators

The MASC annotators for the data presented here were six undergraduate students: three
from Vassar College majoring in cognitive science or computer science, and three linguis-
tics majors from Columbia University. They were trained using guidelines written by Chris-
tiane Fellbaum, based on her experience with previous WordNet annotation efforts. The

2 See downloads link at http: //www.anc.org/MASC/Home . html.



Word  POS Count  WN Senses

fair Adj 1,204 10
long Adj 7,095 9
quiet  Adj 720 6
land Noun 1,942 11
time Noun 38,861 10
work Noun 12,325 7
know  Verb 81,201 11
say Verb 78,345 11
show Verb 16,659 12
tell Verb 14,436 8

Table 1: Round 2 words, absolute frequency in OANC, and number of WordNet 3.0 senses

annotation tool is described below. For each new word, annotators applied the same general
procedures, but learned a new set of sense labels. For example, it is part of the general pro-
cedure that annotators are told to become familiar with the full set of WordNet senses for a
word prior to any annotation, and to consider the WordNet sense relations (e.g., synonymy,
hypernymy) during annotation. It is also part of the general procedure that each sentence ex-
emplifies a single word to be annotated; note that all tokens of that word in a given sentence
are annotated. Annotators typically completed all instances for a single word before doing
the next word.

3.3 Annotation Materials and Tools

The ten words investigated in this study (round 2.2 of MASC) are fairly frequent, moderately
polysemous words, balanced for part-of-speech. The ten words are shown in Table 1 with the
total number of occurrences in the OANC and the number of WordNet 3.0 senses. For rounds
3 through 10, each annotation round of approximately 10 words began with a pre-annotation
sample of 50 sentences per word annotated by 4 annotators for reviewing the WordNet
sense inventory; any revisions to the sense inventory to support MASC annotation were
included in subsequent versions of WordNet. Only then would the 1000 sentences per word
be annotated, with a subset of 100 annotated by all 4 annotators for assessing reliability.
Round 2.2, however, followed an initial round 2.1 where annotators used a beta version
of the annotation tool, and where the sense inventory was reviewed, with no modifications
to WordNet. For each of the ten words in the multiply annotated sample of round 2.2, 100
sentences per word were annotated by five or six trained annotators, depending on the word.>
The resulting 1,000 sentences came from 578 texts representing eight written genres: fiction,
journalism, letters, generic non-fiction, technical reports, government reports, government
proceedings and travel guides. Average sentence length was 27.26 words.

Figure (la) shows WordNet 3.0 senses for adjectival fair in the form displayed to all
(trained and untrained) annotators. The sense number appears in the first column, followed
by the glosses in italics, then sample phrases in plain font. When annotating a word for its
sense, an annotator minimally considers this combination of an index (the sense number),
an intensional definition (gloss), and an example. The examples for each sense can be con-
sidered a sentence cluster, where the annotator’s job is to determine which cluster to assign
the new sentence to. Annotators are also instructed to consider WordNet sense relations,

3 One annotator dropped out during the round.



1 free from favoritism or self-interest
or bias or deception; conforming with e T e — —ror )
established standards or rules:

a fair deal; on a fair footing;
a fair fight; by fair means or foul

2 not excessive or extreme: a fairish
income; reasonable prices

3 very pleasing to the eye: my bonny

File Edit Subversion Font

1) If you're like me, and you use a fair amount of tags (or a fair amount of
ficlets), you might have somewhere in the neighborhood of 2,500.

Comment
lass; there’s a bonny bay beyond; a f -
comely face; young fair maidens ¥10. Untagged.
4 (of a baseball) hit between the foul lines: 1. free from favoritism or self-interest or bias or deception [just]
he hit a fair ball over the third bases bag f - conforming with established standards or rules E
5 lacking exceptional quality or ability: f — A

a novel of average merit; only a fair
performance of the sonata; in fair
health; the caliber of the students has
gone from mediocre to above average; I
the performance was middling at best
attractively feminine: the fair sex

7 (of a manuscript) having few alterations or

- fair deal

f - on a fair footing

- afair fight

- by fair means or foul

2. not excessive or extreme [fairish, reasonable]

=)}

- a fairish income

corrections: fair copy; a clean manuscript =[EIEETE e
8 gained or earned without cheating or 3. very pleasing to the eye [bonny, bonnie, comely, sightly]
stealing: an honest wage; a fair penny —my bonny lass
9 free of clouds or rain: today will be —there's a bonny bay beyond
fair and warm < e i »
10 (used of hair or skin) pale or —
light-colored: a fair complexion L
(a) WordNet senses for fair (b) SATANIC Annotation Tool

Fig. 1: MASC word sense annotation

such as synsets, hypernyms, troponyms, and antonyms. An example in the general guide-
lines discusses two similar senses of the noun center whose immediate hypernyms are area
and point, thus further discriminating the senses into a central area versus a center point.
When creating the MASC annotation tool, it was decided to achieve a balance between ease
of use and richness of information, thus the annotation tool displays the sense number, gloss
and example for each sense. Annotators used the browser interface to WordNet to view the
remaining WordNet lexical information directly from this resource.

Figure (1b) is a screenshot of the SATANIC annotation tool developed to facilitate cen-
tralized management of annotation assignments and data collection. It connects directly
to the ANC subversion (SVN) repository, allowing annotators to retrieve new assignments
(SVN check out) and save results (SVN commit). The top frame displays the current sen-
tence with the sample word in bold face. Annotators can enter free-form comments in the
next frame. Below that is a scrollable window showing each WordNet sense number and its
associated gloss, followed by a list of examples for the sense. Three additional labels are
for uses of the word in a collocation, for sentences where the word is not the desired part-
of-speech, or where no WordNet sense applies. Note that the annotation tool did not display
the WordNet synsets (sets of synonymous senses). For example, the synset for sense 1 of
fair also contains sense 3 of the adjective just. As noted above, however, annotators were
encouraged to consult WordNet directly to view sense relations and other types of WordNet
information, such as the synsets.



3.4 Amazon Mechanical Turk Data: Untrained Annotators

Amazon’s Mechanical Turk (AMT) is a crowdsourcing marketplace where Human Intelli-
gence Tasks (HITs; such as sense annotation for words in a sentence) can be offered, and
where results from a large number of annotators (or turkers) can be obtained quickly. We
used AMT to obtain annotations from turkers on the three adjectives. The task was designed
to acquire annotations for 150 occurrences of the three adjectives: fair, long and quiet. We
collected annotations from 14 turkers per word. Of the 150 occurrences, 100 were the same
as those done by the trained annotators.* The 150 instances per word were divided into 15
HITs of 10 instances each.

Previous work has discussed some of the considerations in using AMT for language
data [35] or word sense annotation [36], such as using a qualification test as a quality fil-
ter. We found that using a preliminary annotation round as a qualification test discouraged
turkers from signing up for our HITs. As it would have been impractical to include all 150
sentences in a single HIT, we divided the task into 15 HITs of 10 occurrences each. To make
the turker annotations parallel to the MASC data, we aimed to have each turker complete
all HITs, rather than mix-and-match turkers across HITs. As a result, we had to discard or
reject HITs for turkers who did not complete them all. This generated two types of protests:
1) some turkers wanted payment for the partial tasks, despite the fact that our instructions
indicated that payment would be conditional on completion of all HITs; 2) rejected HITs
result in lower AMT ratings for the turkers, a factor that affects whether a turker will be
selected for future work. We handled the second case by creating pseudo-tasks for those
turkers whose HITs we had rejected, and accepting all the pseudo-HITs. This ensured that
turkers’ ratings would not go down.

3.5 Expert Labels

We collected expert labels for evaluating the unsupervised learning approach. One of the
co-authors assigned labels to two adjectives, fair and long, and worked together with an
undergraduate research assistant to assign expert labels to the third (quiet). The sets of expert
labels were reviewed twice: A first independent pass was followed by a second pass that led
to a few corrections (2-3%) after comparison with the MASC annotators’ results, or after
comparison between the co-author and the undergraduate.

4 Assessment Methods

Agreement among annotators is typically measured as the proportion of pairs of agreements
that occur overall (pairwise agreement), or by an agreement coefficient that calculates the
proportion of observed agreement that is above chance expectation, meaning the agreements
that could be expected if annotators applied labels randomly at the same rate as observed.
We know a priori that a word’s senses are not all equally likely, thus another obvious way
to compare annotations is to look at the relative probabilities of each sense for each an-
notator. This can tell us whether annotators differ markedly with respect to the likelihood
of specific senses, or with respect to the distribution of likelihoods over the set of senses.

4 The remaining 50 were those used in round 2.1, and are not discussed further here.



Here we present the formulae for computing pairwise agreement and the o agreement coef-
ficient [37], along with three probability-based metrics we refer to as Anveshan (38].°

4.1 Pairwise Agreement

Pairwise agreement is the ratio of the observed number of pairwise agreements among anno-
tators to the maximum possible number. It is a descriptive statistic that provides a measure
of coverage in that it answers the question, how much of the annotated data is agreed upon.
It does not depend on any assumptions about the data, such as independence.

Computation of pairwise agreement for ¢ annotators on i items from k labels, where
n;, < cis the number of annotators who labeled item i as k, is given by:

(3)

i=1 k=1

It sums the number of observed pairs of agreements on labels k& for the ¢ instances and
divides by the total number of possible pairs of agreements.

4.2 Krippendorft’s «

Krippendorff’s « is an agreement coefficient similar to 7 [39], x [40], and related coefficients
that factor out chance agreement.® The general formula for all of them is given by:

Ao — Ae
1-— A
where A, is the observed agreement, and A, is the agreement that would be expected by
chance. For binary annotation labels, the ratio takes values in [-1,1], otherwise (-1,1], where
1 represents perfect agreement, -1 represents perfect disagreement, and O represents the
agreement that would occur if annotators chose labels at the same rate as observed, but ran-
domly.” The various agreement coefficients differ in their assumptions about and computa-
tion of Ac. Cohen’s k takes each annotator’s observed distribution of labels as the expected
label probabilities for that annotator, whereas Krippendorff’s « takes the distribution of la-
bels among all annotators as the expected probability for each annotator.® Krippendorff’s
« evolved from measures of variance, thus casts the above ratio as a difference involving
observed and expected disagreement (equivalent to the above agreement ratio):

a=1—-—
De
where D, is the observed disagreement and D is the expected disagreement. For ¢ items, k
labels, and c annotators, where again n;j, is the number of annotators who assign label k to
item 7, and di; is the distance between a pair of label values k; and k;:

5 Anveshan is available at http: //vikas—bhardwaj.com/tools/Anveshan. zip.

® To compute o, we use Ron Artstein’s perl script.Available as http://ron.artstein.org/
resources/calculate-alpha.perl.

7 Square brackets represent an interval that includes the endpoints; a parenthesis indicates the endpoint is
not included in the interval.

8 The values of x and « generally differ by a very small amount.
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For categorical (nominal) data such as sense labels, the distance function assigns the value
Lif k; # k;, and zero otherwise. All disagreements contribute to the sum D, and all agree-
ments do not. (In other MASC rounds, where an annotator could assign multiple sense labels
if they seemed equally fitting, we used a set-based distance metric to compare pairs of values
k;k;.) Expected disagreement is given by:

k
1
De = e ) 22 2 ks

Jj=1l=1

4.3 Comparison of Pairwise Agreement and «

Because pairwise agreement credits all agreements between any pair of annotators, and
« only credits agreements that would not be predicted by a random distribution, pairwise
agreement is necessarily greater than or equal to a. However, for relatively high pairwise
agreement, « can be high or low. For example, consider the two following very simple cases
for ten instances, two annotation labels, and two annotators. In the first case, the two an-
notators agree that five instances have label L1, that four instances have label Lo, and they
disagree on the tenth instance. In the second case, the annotators agree that nine instances
have label L1, and they disagree on the tenth instance. In both cases, they have the same
number of agreements: pairwise agreement is 90%. However, in the first case, « has the very
high value of 0.81 compared with a low value of 0.00 for the second case. For the first case,
it can be seen that the probability of the two labels are nearly equal (p(Lﬂ:%, p(Lg:%)),
and that for the four combinations of labels ({L;,L1},{L2,L2},{L1,L2}.,{L2,L1}), the two
disagreements should occur about half the time, and the two agreements should occur about
half the time. At 90%, the rate of agreement is thus much higher than expected, and « is
correspondingly high. For the second case, because the probability of label L; is close to
1, the annotators can be expected to agree almost all the time on L;. In fact, the expected
agreement equals the observed agreement, hence « is zero.

4.4 Metrics for Sense Distributions

For a dataset of ¢ annotators who label ¢ items with &k values, there are multiple annotations
of the data that will give the same values for pairwise agreement and «, and all the more so
as ¢, i or k increase in size. For example, given a low «, the disagreement might be due to
a single annotator who deviates strikingly from all others (an outlier); to distinct subsets of
annotators who have high agreement within but not across the subsets; or to an overall pat-
tern of disagreement. Here, where we have relatively large values for c and k, there are many
additional facts of interest about the annotation data besides what proportion of the pairs of
values are the same (pairwise agreement), or what proportion are the same after factoring out
those that might arise by chance (). Given that sense distributions tend to be highly skewed,
it is revealing to know the overall distribution of senses for each word, the distribution of
senses for each annotator, and how similar these distributions are. To distinguish differ-
ent sources of disagreement by comparing sense distributions within and across annotators,
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we use the following metrics: Leverage [41], Kullback-Leibler Divergence (KLD) [42] and
Jensen-Shannon Divergence (JSD) [43]. Each provides a measure of distance of two proba-
bility distributions. We use them in combination with pairwise agreement and « to provide
a deeper analysis of word sense annotations.

Here we present the three metrics. In section 5, we illustrate their use in combination
with « and pairwise agrement to identify annotators who are outliers, and subsets of anno-
tators who are more consistent with each other than with other subsets. In section 6, we use
them to create some of the subsets of annotators for the machine learning experiments.

4.4.1 Leverage

Leverage is a metric which compares two probability distributions over the same population
of individuals k.° The Leverage of P and Q is given by:

Lev(P,Q) = Z|P(k Q(k)|

Leverage has values in [0,1]: Lev(P, Q) = 0 if Q(k) = P(k); Lev(P,Q) = 1if Q(k) =
P(k)~!. Thus a low leverage indicates that P and Q are very similar, while a high score
indicates the inverse. Leverage is used here to compare an individual annotator a’s distribu-
tion of senses (Pq(k)) to the distribution of the average distribution of senses P (k) for all
annotators. Where n;,, is the number of times annotator a uses sense k, ¢ is the number of
annotators, and ¢ is the number of instances:

k k c My
Lev(Pa( P(k Z ko Zk:l ZcbZI 7

4.4.2 Kullback-Leibler Divergence

Kullback-Leibler divergence (KLD) is a non-symmetric measure of the difference between
two probability distributions P and Q, where P is a reference distribution and Q is often an
approximation of P. It has values in [0, co), and is given as:

(k)
KLD(P,Q) = Z P(k) log o®
The KLD score indicates the distance of a dlstrlbutlon Q from P, with a higher score for a
larger deviation. For a given annotator’s distribution as the reference, we use KLD to get its
comparison with the average sense distribution of all other annotators. The omission of the
reference annotator from the average makes it more apparent whether this annotator differs
from all the rest. (Note that if we instead take the reference distribution to be the average
for other annotators, KLLD becomes very large for annotators who failed to use one or more
senses used by other annotators.) We compute a distance measure K LD’ for each annotator,
by computing the KLD between each annotator’s sense distribution (P,) and the average of
the remaining annotators (Q). Where ny, is the number of times annotator b uses sense k, ¢
is the number of annotators, and ¢ is the number of instances:

k Nk
Zk:l Zb;ﬁa Tb

KLD), = KLD(P,(k),Q(k)), where Q(k) = p—

° Novelty [44] is another term for leverage.
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4.4.3 Jensen-Shannon Divergence

Jensen-Shannon divergence is a modification of KLD known as total divergence to the av-
erage. In contrast to KLD, JSD is symmetric. It is given by:

JSD(P,Q) = g KLD(P,M) + J KLD(Q, M), where M = (P +Q)/2

Like KLD, JSD takes on values in [0,00), with lower scores indicating the distributions are
more similar. We compute JSD(Pa,, Pa;) V(i,5), where 4,5 < cand i # j.

5 Assessment of Label Quality

MASC is intended to cover a broad spectrum of genres, and to include accurate annotations
for less frequent word senses. In the lexicographic and linguistic literature, it is taken for
granted that there will be differences in judgment among language users regarding word
sense, but the ramifications of preserving such differences when creating annotated re-
sources have not been explored. Current practice in NLP word sense efforts typically as-
sumes that appropriate annotation guidelines and training can yield a single label for word
senses (cf. [45]). In our view, this achieves consensus at the expense of a more realistic
view of the fluidity of sense judgments and linguistic usage. In our assessment of the la-
bels produced by the trained annotators, we demonstrate the difficulty in the general case of
producing a single ground truth sense label for each word in context, given relatively polyse-
mous words, a very heterogeneous corpus, and half a dozen well-trained annotators. We also
distinguish between the reliability of the annotators in following the general procedures, and
their reliability on each sense inventory.

We show that by comparing several metrics for the annotations, we can identify annota-
tors who are outliers, meaning those whose overal sense assignments differ markedly from
other annotators. and we can also provide a more nuanced assessment of a group of anno-
tators than is given by pairwise agreement or by « alone. We first review the annotations
of the ten words to identify outliers. An annotator can be an outlier due, for example, to
gaps in training; below we identify one annotator who overuses the label that indicates the
word is part of a collocation, due to a misunderstanding of the criteria for collocations. By
eliminating outliers, we can arrive at a more accurate representation of the natural variation
inherent in the task.

After eliminating one to two outliers, agreement among the remaining annotators is suf-
ficiently high on some words to indicate that MASC sense annotation can be performed
reliably, depending on the word. We get the same finding across sets of four well-trained
annotators (distinct subsets of a larger set of ten MASC annotators) on the full set of MASC
words from all rounds [46]. Here, because the same five or six well-trained annotators were
used for all ten words, differences in quality after outliers are eliminated are presumed to
result from properties of the sense labels themselves, such as sense similarity or confusabil-
ity, or from inherent differences in how the annotators interpret the sentences. We do not
attempt to distinguish these two cases in the present paper.

The next subsections identify outliers among the trained annotators for each word, assess
the labels from the remaining trained annotators, and assess the mechanical turkers. Note
that alll MASC annotations, including outliers, are used in the machine learning experiments
described in the following section. The learning method estimates annotator quality from the
observed distribution of labels, thus learns to place less trust in some annotators.
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WordNet | Senses Pairwise

Word-pos Senses Used Ann. Agrt. «

long-j 9 4 6 0.81 | 0.67
fair-j 10 6 5 0.71 | 0.54
quiet-j 6 5 6 0.64 | 0.49
time-n 10 8 5 0.75 | 0.68
work-n 7 7 5 0.71 | 0.62
land-n 11 9 6 0.57 | 0.49
tell-v 8 8 6 0.61 | 0.46
show-v 12 10 5 0.53 | 0.46
say-v 11 10 6 0.57 | 0.37
know-v 11 10 5 0.52 | 0.37

Table 2: Pairwise agreement and « on ten words. (Senses Used indicates how many of the WordNet senses
were used as sense labels; Ann. is the number of annotators for a given word.)

5.1 Outlier Identification and Reliability: Trained Annotators

Table 2 shows pairwise agreement and « on the ten words, prior to elimination of outliers.
There is a weak negative correlation of pairwise agreement with number of senses in the
inventory that is not significant, using Spearman’s p (p = —0.64,p ~ 0.05), but a non-
significant correlation for o (p = —0.47, p &~ 0.16).' However, there is a highly significant
negative correlation of pairwise agreement with number of senses used (p = —0.84,p ~
0.002), and similarly for a (p = —0.72,p =~ 0.018). Agreement goes down as the number
of senses used goes up. Further discussion of pairwise agreement and « is deferred until
after outliers are eliminated and these metrics are recomputed.

An outlier is defined as a statistical observation whose value is markedly different from
others in a sample. When data fits a known distribution, outliers can be identified by measur-
ing the distance of a data point from metrics that characterize the distribution. For example,
the number of standard deviations from the mean measures indicates how far from normal-
ity a sample observation lies, given a population that follows the normal distribution. Given
a heterogeneous corpus such as MASC, the distribution of senses often appears to be Zip-
fian, meaning a few labels occur with very high frequency, a few more occur with moderate
frequency, and a long-tailed remainder occur relatively rarely. In any particular case, the ob-
served distribution depends on factors such as the number of labels in the sense inventories,
the nature of the semantic relations among the labels, and the size and constituency of the
corpus of examples. Given many annotators, the rate that each sense label occurs for a given
word can serve as an estimate of the true probability of the word sense, and the rate of each
sense label for a given instance can serve as an estimate of the probability distribution over
senses for that word in that context. We use Leverage, JSD and KLD’ to identify outlier
annotators.

An outlier is an annotator who uses one or more labels at a rate much higher or lower
than other annotators. Outliers can result from differences in the procedures followed by
the annotator, or from differences in the way annotators interpret the labels and instances;
the metrics alone cannot distinguish these two cases. In this section we illustrate both cases
through examples and plots that accompany the metrics to show concretely how outliers can
be inferred given extreme values of one or more metrics.

10 Duye to ties in the data, the p-value computation is not exact.
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Fig. 2: Outlier identification for 6 annotators of long

On the assumption that the observed proportion of sense labels for each annotator repre-
sents a probability distribution of senses, the three metrics of Leverage, JSD and KLD’ are
different measures of the similarity of a given annotator’s distribution of senses to other an-
notators, taken as a group (Leverage, KLD’) or one by one (JSD). Leverage represents how
far on average the probability of annotator a’s sense labels k are from the average probabil-
ity of k across all annotators. JSD(Pq (k),Py(k)),a # b indicates the similarity of the two
sense distributions for a pair of annotators a and b. JSD for an annotator a is the average
JSD for all pairings of a with annotators other than a, and indicates the average similarity
of that annotator’s sense distributions to those of all other annotators. KLD’ indicates how
different an annotator’s sense distribution is from the average of all the others. An annotator
with values of Leverage, JSD and KLD’ that are far above the norm is a clear outlier.

Figure 2 illustrates how annotator A108 is identified as an outlier for long. Table (2a)
of the figure shows that A108 has much higher values of all three metrics than the five
remaining annotators. The bar chart in Figure (2b) illustrates for each annotator (x-axis)
the frequency of each sense (y-axis). Inspection of the sense distributions for A108 in the
bar chart, compared with other annotators, shows a far greater proportion of long annotated
as part of a collocation (Other; a rate of 0.36 compared with 0.09 on average). This pattern
also appears in A108’s annotations of other words, but exceptionally so for long. The marked
difference in A108’s sense distributions reflects a gap in training regarding the criteria for
collocations. It should be noted that 108 joined the effort later than the other annotators, and
received training at a different time. The remaining annotators have rather similar values of
Leverage, JSD and KLD’. Figure (2b) illustrates the similarity of their sense distributions.
After dropping A108, the consistency across the remaining annotators is reflected in an
increase in pairwise agreement from 0.81 to 0.89 and an increase in « from 0.67 to 0.80.
The latter value is noteworthy in that & > 0.80 is taken to represent excellent annotator
reliability by one of the more conservative scales of interpretation [37].

Figure 3 represents a contrasting case in which there are two annotators of quiet (A108
and A102) we identify as outliers. The remaining annotators fall into two subsets who are
consistent within but not across the subsets. A108 and A102 have similarly high Leverage,
and A108 also has very high JSD and KLD’. The plot in Figure 3b shows that A108 again
has a far greater than average frequency of collocations and a compensatorily much lower
than average rate of sense 2. A102 has a much greater than average rate of sense 2 and a
rather lower rate of sense 1. After dropping A108 and A102 for guiet, the remaining anno-
tators are not as consistent with one another as we saw above for long: pairwise agreement
increases only from 0.64 to 0.66, and « does not increase. However, for two pairs, agree-

14



0.7
Ann ‘ Leverage ‘ JSD ‘ KLD’ HSense-1
A108 0.383 | 0.1687 | 0.8910 7 Sense-2
A102 0.400 | 0.0588 | 0.1357 & Sense-3
A105 0.220 | 0.0475 | 0.1647 mSense-4
A107 0.327 | 0.0428 | 0.0429 OSense-5
A103 0.237 | 0.0525 | 0.1197 mOther
A101 0.183 | 0.0516 | 0.1159 :
A101 A102 A103 AL05 A107 A108
(a) Leverage, JSD and KLD’ (b) Sense distributions
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Senses Dropped Pairwise Subset
Word-pos Used Anns Agrt. a Subset JSD «
long-j 4 | AlL08 0.89 | 0.80 | NA NA NA
fair-j 6 | A108,A102 0.77 | 0.63 | NA NA NA
quiet-j 5 | A108,A102 0.66 | 049 | Al01, A103 0.0696 0.61
time-n 8 | AlIO8 0.77 | 0.71 | NA NA NA
work-n 7 | A108 0.70 | 0.60 | NA NA NA
land-n 9 | Al08 0.61 | 0.54 | Al101, A103 0.0403 0.60
show-v 8 | AlO1 0.55 | 048 | A102, A105 0.0132 0.52
A107, A108 0.0140 0.53
tell-v 12 | A103 0.64 | 0.50 | A101, A108 0.0113 0.57
know-v 11 | A102 0.62 | 048 | Al01, A108 0.0492 0.52
say-v 11 | A101,A103 0.59 | 044 | A102, A105, A107 | 0.0302 0.51

Table 3: Pairwise agreement and « after dropping outlier annotators. (Senses Used indicates how many of the
WordNet senses were used; Ann is the number of annotators for a given word.)

ment is very high: for (A101, A103) pairwise agreement is 0.93 and « is 0.86; for (A105,
A107), pairwise agreement is 0.89 and « is 0.81. The main difference between the two pairs
is that the latter use sense 1 relatively more often (52.5% versus 41% on average) and sense
3 relatively less often (17% versus 32% on average).

We briefly summarize the remaining cases. Fair is similar to quiet in that again, anno-
tator A108 uses the label Other much more often than other annotators. A102 uses sense
1 relatively less often than the average of other annotators (43.4% versus 54.5%). For the
word say-v, annotators A101 and A103 have relatively high Leverage (0.40 or above versus
arange of 0.12 to 0.33 for the rest), the KLD’ for A103 is very high (0.88). For A101, KLD’
is high relative to the others (0.39 versus a range of 0.09 to 0.31), as is JSD (above 0.12
versus below 0.10). A101 uses sense 1 56% of the time compared with an average for the
rest of 34%. A103 uses sense 2 56% of the time compared with an average for the rest of
34%.

Table 3 shows pairwise agreement and « after dropping outliers, with an apparent pattern
of higher ranges for adjectives, less high for nouns, and lowest for verbs. The last three
columns show subsets of annotators for these words who have relatively low JSD (hence
more similar sense distributions), and also whose « is relatively higher; for the last row (say-
v) with three annotators in the Subset column, J.S D for the three pairs is shown. We now see
lower Spearman correlations of senses used with pairwise agreement (p = —.645, p =~ 0.04)
or with a (p = —0.581, p = 0.08).

15



WordNet | Senses Pairwise
Word-pos Senses Used Ann Agrt. «
100 instances
long-j 9 9 14 0.28 | 0.12
fair-j 10 10 14 048 | 0.29
quiet-j 6 6 14 0.25 | 0.09

Table 4: Pairwise agreement and « for labels from 14 turkers for the adjectives (Senses Used indicates how
many of the WordNet senses were used as sense labels; Ann is the number of annotators for a given word.)

Ann Leverage [ JSD KLD’

fair
T102 0.100 | 0.0233 | 0.0592
T107 0.116 | 0.0171 | 0.0349
T108 0.116 | 0.0180 | 0.0398
T114 0.132 | 0.2655 | 0.3421
T111 0.212 | 0.0408 | 0.7575
long
T104 0.184 | 0.0694 | 0.2932
T108 0.250 | 0.0765 | 0.2103
T119 0.250 | 0.0768 | 0.2120
T111 0.294 | 0.0904 | 0.2154
T107 0.294 | 0.0938 | 0.2485
quiet
T131 0.196 | 0.0610 | 0.1159
T122 0.264 | 0.0597 | 0.1144
T123 0.292 | 0.0665 | 0.1409
T127 0.348 | 0.1121 | 0.5730
T119 0.464 | 0.1005 | 0.2934

Table 5: Leverage, J.SD and KLD’ for the 5 best turkers for each adjective.

After dropping outliers and finding consistent subsets by means of Leverage, JSD and
KLD’, the values in column Subset « of Table 3—where they exist—or in column « otherwise,
range from a low of 0.51 (moderate reliability) to 0.80 (excellent reliability). As described
above for quiet, there are often subsets of annotators who are very consistent within but not
across subsets. In this small sample, the results show greater agreement on adjectives than
nouns, and on nouns than verbs. While this accords with claims for a part-of-speech effect
from prior work [16, 13], it is not borne out in the full MASC data [46].

5.2 Untrained Annotators

As expected, when we turn to the assessment of the 14 turkers, they exhibit lower pairwise
agreement and lower « scores than the trained annotators. This is shown in Table 4, with
pairwise agreement in [0.25, 0.48], and « in [0.09, 0.29]. Note that the turkers use all senses
in the inventory, in contrast to the trained annotators. The turkers perhaps assume the task
is to find examples for all the senses. The turkers exhibit higher pairwise agreement and «
on fair than on the other two adjectives, despite the fact that fair has the largest number of
senses. The trained annotators had higher agreement on long; for both sets of annotators,
agreement was lowest for quiet.

Turning to the measures based on the sense distributions, the turkers’ annotations exhibit
markedly higher values of Leverage, JSD and KLD’ in comparison to the trained annota-
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Fig. 4: Sense distributions on three adjectives for the best turkers

tors, which is also to be expected. For example, Leverage ranges from 0.047 to 0.553 for the
trained annotators on the three adjectives (0.047 to 0.580 for all words), and from 0.217 to
1.433 for the turkers.!! 75D ranges from 0.000 to 0.216 for the trained annotators on the
three adjectives (0.000 to 0.220 on all words), compared with 0.003 to 0.951 for the turkers.
KLD’ ranges from 0.023 to 0.891 for the trained annotators (0.023 to 1.345 on all words),
and from 0.093 to 2.819 for the turkers.

Despite the very high disagreement among turkers overall, and the large differences in
sense distributions, it is possible to identify subsets of turkers who have agreement as good

11 In the interest of space, we presented full Leverage, JSD and KLD’ across trained annotators for only
two of the eight words (Tables 2a-3a).
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1 characterized by an absence or near absence of agitation or activity: a quiet life; a quiet throng
of onlookers; quiet peace-loving people; the factions remained quiet for almost 10 years

2 free of noise or uproar; or making little if any sound: a quiet audience at the concert;
the room was dark and quiet

3 not showy or obtrusive: clothes in quiet good taste

4 in a softened tone: hushed voices; muted trumpets a subdued whisper; a quiet reprimand

(a) Four senses of quiet: WordNet definitions and examples

A101

A102

A103

A105

A107

A108

E101

E102

2

]

2

a1

2

a1

3

3

1. In this well-produced spot, the intentional

y quiet images never get

in the way of the message.

3[4 7T 3 1T 21T 2 1 3 1 1 1 1
2. The Armenian government downplayed the incident, claiming that the
city and country are quiet and the only events are taking place around
the parliament building.

(b) Labels from trained and expert annotators on two sentences

Fig. 5: Sentences with high disagreement on quiet

as or better than the trained annotators. For fair, there are five annotators among the turkers
who have relatively good agreement: pairwise agreement=0.86 and a=0.74. For use in the
machine learning experiments, we chose a subset size of five rather than six because some
of the sets of trained annotators were size five, and because adding any additional turker
significantly lowers the quality of the sets of turker multilabels for the three words. The 5
turkers with the highest agreement on long have pairwise agreement=0.74 and «=0.57. For
quiet, the best subset of turkers has lower agreement than for the other two words: pairwise
agreement=0.54 and =0.392.

Table 5 shows the Leverage, JSD and KLD’ for the 5 best turkers for the three adjec-
tives. Fair, which has the highest agreement, also has a range of values for the probability
distribution metrics that is closer to the trained annotators. Not all the same turkers did all
the words, but we see that certain turkers who perform well on fair also perform well on
long: T107, T108 and T111. The two annotators least similar to the rest are T111 and T114.
From Figure (4a), showing the sense distributions for each of the 5 best turkers on fair, we
can see that T111 and T114 differ most in having a lower probability for sense 1. For long,
T108 and T119 have the most similar values of the three metrics; T104 has particularly high
KLD’, T107 has particularly high JSD, and T111 and T107 have the highest Leverage. Fig-
ure (4a) illustrates that all the annotators are similar in using sense 1 most often, followed by
sense 2, and that two annotators also use sense 5 quite often. Of the three adjectives, quiet
exhibits the least uniformity among the turkers. As shown in Table 5, T127 has the highest
JSD and KLD’; T119 has the highest leverage. Figure (4c) clearly shows that there is more
variation among the turkers on the senses for guiet than for the other two adjectives.

5.3 Discussion of annotator reliability

For the ten moderately polysemous words investigated here, even after eliminating outliers,
there is still a wide range of agreement values (Table 3), from a high of « =0.80 to a low of «
=0.44. Because the same annotators apply the same general procedures for all ten words, the
lower agreement values cannot be explained as noise or error. Because the sense inventories
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for all ten words have been carefully reviewed by the annotators and an expert member of
the WordNet team (Christiane Fellbaum), the lower agreement values observed in Table 3
are also unlikely to be due to faulty application of the procedures for creating WordNet
sense inventories. We believe they result instead from a natural variation across individuals
regarding the meanings of certain words in context. Some contexts are more objective than
others; length, for example, is a physical property that can be measured objectively, while
fairness is a matter of judgment (see example 1) in section 1).

The word quiet, with a lower « (0.49) than the other adjectives, has meanings which are
also a matter of judgment. Figure 5 shows the WordNet senses of quiet (excluding one sense
specific to water, and another specific to the sun), and two sentences with labels illustrating
a fair amount of disagreement. The labels are from six trained annotators, plus two expert
labelers (E101, E102, one of whom is one of the co-authors).

The word spot in sentence 1 refers to a 1996 political advertisement in Slate magazine.
We observe a difference in whether the annotators seem to interpret images as referring
only to a visual dimension (sense 3) or to an audiovisual dimension (senses 2 and 4), and
whether the absence of sound is the result of intentional activity (sense 4). The three senses
selected by two or three annotators can be associated with the following interpretations
reflecting these differences: the images are not associated with sounds in the sound track,
possibly inherently (sense 2); the images are unobtrusive and backgrounded with respect to
the message (sense 3); sounds associated with the depicted entities have been muted by the
depicted individuals or by the filmmaker (sense 4).

Sentence 2 is from a 1999 Slate article reporting that gunmen killed the Armenian Prime
Minister and other government leaders. It describes the city and country as guiet; which the
annotators interpreted variously as exhibiting no activity (sense 1); being relatively free of
noise (sense 2); characterized by citizens behaving in a restrained fashion (sense 3); or where
people have intentionally lowered the volume of their activities (sense 4).

In both cases from Figure 5, it would be difficult to claim that there is a single correct
reading; none of the readings appears to be incorrect. How one interprets each sentence
presumably depends in part on the perspective one takes on the production values of political
advertisements, or on the nature of claims made by a government.

6 Machine Learning from Multiple Labels or Features

Our next goal is to determine whether it is possible to learn expert quality labels from sets of
multilabels produced by trained or untrained annotators. We present results from a series of
machine learning experiments to infer true labels from multilabels. Our original hypothesis
was that future annotation efforts could benefit from insight into the tradeoffs between using
fewer labels from trained annotators versus more labels from untrained annotators for word
sense. Ultimately, we find no consistent pattern regarding the number of annotators to use.
Instead, we find that learning performance depends at least in part on the quality of a given
set of multilabels, as measured by our assessment metrics.

For these experiments, we used the three adjectives fair, long, and quiet, because they
had higher levels of agreement from the trained annotators.'> GLAD, the unsupervised
method we rely on, is an example of a family of graphical models that have been applied
to NLP at least since [48], where their application to word sense disambiguation data is il-
lustrated for nearly three dozen words, with an average of 8.5 senses each. GLAD assumes

12 Due to lack of resources and time, we could not do all round 2.2. words.

19



that items vary in difficulty, and that labelers vary in accuracy [33]. It treats the true labels,
labeler accuracy and instance difficulty as hidden variables to be inferred probabilistically
from the observed multilabels, as illustrated in Figure 6."3 From the distribution of observed
labels L;; from ¢ annotators on j instances, it learns the probability of true labels Z;, given
inferred annotator accuracies «; and instance difficulties 3;:

1
p(Lij = Zjlay, Bj) = 14 o—cif;

Maximum likelihood estimates of the model parameters are obtained using Expectation-
Maximization. The approach outperforms majority voting on several image datasets. The
method of generating an integrated labeling quality proposed by [47] also outperformed
majority voting.

Although majority voting has been pro-
posed as a way to combine labels from mul-
tiple sources, it does not perform well in our Instance difficulty
case. When we compared the results on the 1
five types of multilabel sources (e.g., trained

annotators versus turkers) for the seven word /

sense tasks (thirty-five cases), we found that E—

GLAD significantly outperformed majority

voting twenty-six times out of the thirty-five Z @
on accuracy and F-measure; in the remaining

nine cases GLAD results did not differ signif-

icantly from a majority vote.
GLAD is designed to learn a binary clas-
sification, so we prepare seven learning tasks,
using the highest frequency senses for each Observed labels
word: senses 1 and 2 of fair, senses 1 and 2 of
long, and senses 1 through 3 of quiet. Column
2 of Table 6 shows the number of positive and ° a °

=

negative instances (out of 100) assigned by Labeler accuracies

the expert for each task. We run five experi-

ments on each learning task, using different Fig. 6: Graphical model of instance dif-
sets of labels from trained or untrained anno- ficulties (), true labels (Z), observed
tators. In the first experiment, GLAD is ap- labels (L), and labeler accuracies (o

plied to the five or six labels from the trained from [33]).

annotators (MASC), including the outliers. In

the second, learning is from the best subset of

size 5 from the turkers’ labels (AMT best5); these are the turkers from Table 5. In the third,
learning is from subsets of size 6 from the turkers’ labels: 50 random samples of size 6 are
selected for each sense, and the average over the 50 samples is reported (AMT subsetsqvg).
In the fourth, all the turkers labels are used for learning (AMT all). In the fifth, GLAD is
applied to the combination of labels from trained annotators and turkers (COMB). Eval-
uation uses the ground truth labels described in section 3.5. To evaluate performance, we
report recall, precision, and F-measure on the positive class, and accuracy. Table 6 shows
GLAD performance for the five experiments.'* The rows with the highest recall, precision,
F measure and accuracy are in boldface.

13 GLAD is available from http://mplab.ucsd.edu/~jake.
14 Note that the learning performance results for AMT subsetsqy 4 are averages over fifty iterations.
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WN Sense Pos./Neg. Exp Rec Pre F Acc

fair, sense 1 52/48 MASC 092 094 093 093
AMT best5 0.66 0.70 0.68 0.78
AMT subsetsqvg 059 075  0.67 0.78
AMT all 1.00 0.71 0.85 0.79
COMB 1.00 0.74 0.87 0.82
fair, sense 2 20/80 MASC 0.69 048 0.58 0.83
AMT best5 045 1.00 0.73 097
AMT subsetsqvg 045  0.89  0.67 095
AMT all 0.81 093 0.87 0.96
COMB 0.81 093 0.87 0.96
long, sense 1 57/43  MASC 0.88 084 086 0.84
AMT best5 0.64 098 0.81 0.99
AMT subsetsqvg 036 098 055 0.74
AMT all 1.00 098 0.99 0.99
COMB 1.00 098 0.99 0.99
long, sense 2 38/62 MASC 074 080 077 0.83
AMT best5 0.69 092 0.81 093
AMT subsetsqvg  0.57 094 072 0.88
AMT 079 094 0.86 0.90
COMB 095 097 096 0.97
quiet, sense 1 12/88 MASC 094 086 090 093
AMT best5 0.50 092 071 0.87
AMT subsetsqng  0.12 0.84 033 071
AMT all 0.00 0.00 0.00 0.66
COMB 0.50 094 072 0.82
quiet, sense 2 21/79 MASC 078 064 071 0.88
AMT best5 036 0.70 0.53 0.90
AMT subsetsqvg  0.19 079 041 0.87
AMT 0.10 1.00 0.55 0.86
COMB 0.61 1.00 0.81 0.93
quiet, sense 3 13/87 MASC 0.60 1.00 0.80 0.82
AMT best5 045 1.00 0.72 0.81
AMT subsetsqvg  0.14 095 0.54  0.63
AMT 0.05 1.00 0.53 0.58
COMB 042 1.00 071 0.74

Table 6: GLAD Results for six experiments

Experiment 1-Half a dozen trained annotators (MASC) This experiment, which used all the
labels from the MASC annotators, addressed whether there is an advantage to a smaller set
of labels from trained annotators. In three of the learning tasks, GLAD learned best from the
trained annotators: sense 1 of fair, and senses 1 and 3 of quiet. For sense 2 of quiet, MASC
labels were competitive with or better than all but COMB. For sense 1 of long, GLAD
MASC results were better than AMT subsetsqvg, about the same as AMT best5, and not as
good as AMT. For sense 2 of fair, MASC labels yielded the poorest GLAD performance of
the 5 sets of multilabels.

Experiment 2—Best subset of five turkers (AMT best5) This experiment addressed whether
selecting high quality subsets of turkers could yield GLAD results equivalent to learning
from the same number of labels from trained annotators. The answer was yes for sense 2 of
fair, both senses of long, and no otherwise. AMT best5 was never the best, but was close to
best on sense 2 of fair.
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Experiment 3—Average over random subsets of half a dozen turkers (AMT subsetsavg) This
experiment addressed the quality of learning a ground truth label by averaging over fifty
iterations of random subsets of six turkers. For sense 2 of fair, the AMT subsetsqvg multi-
labels led to better performance than the MASC multilabels and nearly as good as the best
(COMB). For both senses of fair, AMT subsetsqsg Was equivalent or almost equivalent to
learning from labels from the best subsets of turkers.

Experiment 4—Fourteen turkers (AMT) This experiment addressed whether with untrained
annotators, doubling the number of labels always improves results, as reported elsewhere [29]
[34]. Learning from all the turkers improved over AMT subsetsqvg for senses of fair and
long. For senses 2 and 3 of quiet, performance on AMT was rather comparable to AMT
subsetsqvg, but for quiet it was quite a bit lower on accuracy (0.66 versus 0.71), and was
zero for recall, precision and f-measure. The low performance here is due to the fact that
the negative label was always assigned; the probability of the positive label is so low (0.06)
that given the relatively few instances, it becomes harder to estimate its probability using
EM. However, the AMT labels did produce the highest or next highest results for three
senses (sense 2 of fair, and both senses of long). Overall, experiment 4 results were good
but not the best on accuracy, and were often poor on F measure. As we will see next, the
combination of all turkers with trained annotators never degraded results.

Experiment 5—Combination of trained annotators and turkers (COMB) This experiment
addressed whether combining labels from trained and untrained annotators improves results.
Results improved over untrained labels alone in four of the seven cases, and were roughly
equivalent in the remaining cases.

Comparison across experiments The comparison of the five cases does not yield consistent
results across the seven learning tasks. Learning from trained annotators often yields results
closest to an expert’s labels, but not always. Learning from many turkers’ labels is as good
or better than from fewer trained annotators only half the time. This suggests that the overall
quality of the set of multilabels might matter when using less than the maximum set of mul-
tilabels (COMB). We next ask whether assessments of the sets of labels for each experiment
sheds any light on the pattern of results.

The assessment metrics presented in section 5 were for all senses per word. Because the
GLAD experiments use a modified form of the data in which all labels other than the target
sense are treated as Other, we recompute the assessment metrics using this binary represen-
tation for each target sense. Table 7 gives the pairwise agreement and « scores across all
annotators for a given experiment on a given binary sense label.!” For a given sense label,
such as sense 1 of fair, the new data representation obscures the fact that annotators who did
not choose sense 1 might have disagreed with sense 1 in different ways (e.g., sense 2 ver-
sus sense 3), therefore the absolute values of the assessments no longer measure the actual
agreement. Howevever, they still show the relative degrees of agreement. Thus the trained
annotators (MASC) have a slighly lower pairwise agreement on fair sense 1 (0.82) than the
best subset of five turkers (AMT best5: 0.89), but on average, the MASC annotators sense

15 This table reports averages. The column headed Lev gives the average across all annotators of
Lev(Py(k), P(k)), followed by the average JSD (JSD) for all pairs of annotators a, b, wherea # b of
JSD(Py(k), Py(k)), followed by the average KLD’ (K LD’): KLD'(Pqs(k), Py(k)),b # a. Note that
the assessment results for AMT subsetsq g are averages of averages over fifty iterations.
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WN Sense Pos./Neg. Exp Agt. «a Lev JSD KLD'

fair, sense 1 52/48  MASC 0.82 0.65 0.089 0.004 0.011
AMT best5 089 0.77 0.122  0.008 0.019
AMT subsetsqug  0.65 028 0354  0.097 0.213
AMT all 0.67 033 0337 0.081 0.203
COMB 059 0.18 0.235 0.045 0.108
fair, sense 2 20/80 MASC 0.79 045 0.108  0.009 0.022
AMT best5 093 0.82 0.038 0.001 0.003
AMT subsetsqng 079 035 0.123  0.016 0.038
AMT all 0.77 043 0.090 0.020 0.070
COMB 070 0.24 0.093 0.019 0.050
long, sense 1 57/43 MASC 085 0.69 0.177 0.026 0.061
AMT best5 0.80 0.59 0.170 0.015 0.037
AMT subsetsqug  0.68 022 0388  0.135 0.289
AMT all 0.66 0.22 0453 0.140 0.272
COMB 0.60 0.16 0406 0.110 0.206
long, sense 2 38/62  MASC 093 0.86 0.024 0.000 0.000
AMT best5 089 0.74 0.069 0.004 0.010
AMT subsetsqug 075 034 0.183  0.052 0.101
AMT all 076 0.29 0.180  0.047 0.081
COMB 0.68 0.17 0.171  0.045 0.077
quiet, sense 1 12/88 MASC 0.79 057 0129 0.012 0.028
AMT best5 077 045 0120 0.010 0.026
AMT subsetsqug 072 0.10  0.209  0.059 0.126
AMT all 072  0.10 0.213 0.052 0.100
COMB 073 0.11 0.218 0.058 0.110
quiet, sense 2 21/79  MASC 081 045 0122 0.019 0.047
AMT best5 075 042 0.214 0.035 0.082
AMT subsetsqng 070 0.12  0.188  0.044 0.095
AMT 0.69 0.17 0.226 0.051 0.100
COMB 0.70 0.13 0.196 0.046 0.088
quiet, sense 3 13/87 MASC 085 0.59 0.130 0.013 0.030
AMT best5 082 045 0.112 0.012 0.028
AMT subsetsqvg 072 0.08  0.105  0.011 0.027
AMT 074 0.11  0.093 0.007 0.016
COMB 0.72  0.09 0.105 0.010 0.022

Table 7: Five assessment metrics on labels for the five learning experiments

distributions are more similar to one another than the AMT best5 annotators, as reflected by
the lower average values for AMT best5 of leverage, JSD and KLD’.

For each learning task (e.g., sense 1 of fair), the experiment label in column 2 is in
boldface for the experiment that had the best result, or the experiments that had similarly
good results. Values in columns 6 through 8 (the probability-based assessment metrics) are
in boldface to indicate which of the five sets of labels had the best (lowest) values for av-
erage leverage, JSD and KLD’. Here we see a possible explanation for the difference in
performance shown in Table 6. There is an apparent trend for GLAD to perform well in
predicting expert labels when the sense distributions across annotators are similar. In four
of the seven learning tasks, GLAD results are best for the set of multilabels that had the
lowest average leverage, JSD and KLD’ (senses 1 and 2 of fair, sense 2 of long) or nearly
tied for the lowest (sense 1 of quiet). In a fifth case—sense 3 of quiet—the probability-based
metrics are rather low in all the experiments, and the two that had the highest GLAD perfor-
mance (MASC, AMT best5) are the only ones that had non-chance values of a. While there
are no strong correlations of F-measure or accuracy with any of our metrics, the density in
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the lower right corner of Figure 7 shows an association between accuracies above 0.80 and
KLD’ below 0.10. We see a similar pattern for JSD and Leverage.

The two remaining cases are some-
what anomalous. COMB had the high-

est performance for sense 2 of quiet, but Accuracy by Avg KLD'

nothing in the assessment data to dis- 035

tinguish this experiment among the five. 03 * .
All had relatively low JSD and KLD’; 062_; N R
three Lf the experiments had relatively 0.5 .

low Lev along with a distribution of « 0l e
scores similar to sense 3 of quiet. For 0'02 ‘ . 0¢£ LA

sense 1 of long, we see no explanation 0 0.2 0.4 0.6 0.8 1
for the unusually good GLAD perfor-

mance for AMT all and COMB. JSD  Fijg 7. Plot of accuracy (x-axis) by KLD (y-
and K LD’ are low, while Lev is rather axis), all experiments.

high (0.453 and 0.406). The number of

instances is high (57), but is also high for

sense 1 of fair (52). Comparison of the average values for annotator accuracy and item dif-
ficulty produced by GLAD was also unrevealing.

In summary, the results presented here suggest there is no a priori best number of an-
notators or level of annotator training that consistently yields expert quality labels. On the
other hand, it is possible to learn a single label close to expert quality. Further, it appears that
crowdsourcing could substitute for trained labelers even on word sense labeling using fine-
grained sense inventories given a sufficient number of labelers with sufficient consistency in
sense distributions.

7 Discussion

Regarding our first question of how to collect word sense labels for moderately polysemous
words, to assess the annotation quality, we have shown the aptness of using leverage, JSD
and KLD to compare distributions of word sense in data from multiple annotators. We find
that the annotation procedure we followed is reliable, and that it is possible to collect reliable
labels from trained annotators for some polysemous words. For other words, the sense labels
cannot be applied as reliably. Because the same annotators follow the same procedures well
with some words, we assume that lower performance on other words is due to properties
of the words and their sense inventories, or to the contexts of use, or both. Besides assist-
ing in the identification of outliers, these metrics help pinpoint the source of similarities
among subsets of annotators who agree well with one another, but not with other subsets.
In previous work, we speculated that confusability of pairs of sense labels for a given word
correlated with an inter-sense similarity measure [49], or with the relative concreteness of
senses, or with specificity of contexts of use [50]. To go beyond speculation would require
much more data than we have investigated here, so this is an endeavor we leave for future
work.

We have also explored whether we can posit criteria to collect sets of multilabels that
can be used to infer a true sense label for each instance, give our task of labeling contexts
of relatively polysemous words. Results from our suite of metrics indicate that there is a
trend for accuracy of the inferred true label to be higher when annotators’ probability distri-
butions over senses are more similar. Previous work on the use of noisy labels investigated
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the performance of inferring a true label given multilabels from annotators with a uniform
probability of being correct, and found that as long as the probability of a true label was
greater than 0.5, adding new labelers eventually yielded high performance [47]. In the same
spirit, we suggest that for the word sense task, it might be possible to monitor quality as
noisy labels are collected from untrained annotators, and to continue acquiring new labels
until a certain quality threshold is reached. We are currently pursing this possibility, using
Bayesian methods to estimate annotator quality, and to learn a full set of sense categories
rather than binary senses.

For semantic and pragmatic distinctions, it is to be expected that some judgments are
more difficult to make than others, and that they will give rise to less agreement among
annotators working independently. In such cases, interesting patterns that would not be ap-
parent using only two or three annotators are revealed by collecting labels from multiple
annotators. In particular, multilabels provide greater evidence for instances that are more
difficult for everyone to agree on. Figure (5b) illustrated two examples where there is no
single high probability sense for quiet; there is no pattern to the disagreement. This contrast
with example 1), where annotators were split evenly between two senses of fair, and where
there is a systematic pattern of disagreement between senses 1 and 2 for many instances. For
the cases of systematic disagreement between two senses, while it is difficult to assign a true
sense label, it is clear that the true label is not any of the senses other than 1 or 2. Presum-
ably, methods to distinguish among instances that lead to high agreement versus systematic
disagreement versus noisy disagreement could increase our understanding of word sense,
and improve the performance of automated word sense disambiguation systems.

8 Conclusion

We presented a dataset consisting of word sense multilabels from trained and untrained
annotators for moderately polysemous words. This data, which will be included with MASC
releases, shows the benefits of multilabels for discriminating between instances that yield
high agreement across annotators, those associated with a split among annotators (as in
example 1), and those where annotators choose many senses (as in Figure (5b)). While it
is expensive for individual research groups to collect such data, incorporating it as part of
a community resource provides researchers an opportunity to investigate in new ways the
complex interaction among words, senses, contexts of use, and annotators.

The assessment of the multilabels demonstrates that word sense annotation based on
labels from a relatively finer-grained sense inventory can achieve excellent to moderate re-
liability, depending on the word. We find the same range of differences in reliability across
words for the entire MASC word sense corpus, using different sets of four well-trained an-
notators [46]. In previous work, we have suggested that the factors that differentiate words
with respect to the reliability of their sense inventories might include characteristics that
typify their contexts of uses, such as whether the contexts tend to be more specific; measur-
able properties of a word’s sense inventory, such as inter-sense similarity; or other properties
whose measurement remains difficult, such as relative concreteness of the senses. In the full
set of reliability annotations for the MASC word sense corpus, there are roughly 90 addi-
tional words beyond those investigated here, each with four annotators per 100 instances
for each word, for a total of 9,000 additional instances of multilabels of size 4. This should
provide valuable data for investigating such factors more deeply.

Annotation, which has long been an investigative tool in Natural Language Processing,
seems to be growing in importance, given the increasing number venues to report the results
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of annotation projects. Relatively new venues include the Linguistic Annotation Workshops
(LAW), and the inclusion of a Resources/Evaluation track for recent annual meetings of
the Association for Computational Linguistics. This suggests that inexpensive methods to
achieve high quality annotation will become increasingly important. To this end, our anal-
ysis of sets of multilabels from trained and untrained annotators on 1000 instances (100
for each of 10 words) includes a deeper investigation of 300 instances (for three adjec-
tives). Our learning experiments demonstrate that expert quality labels for word sense can
be learned from noisy multilabels acquired by crowdsourcing. At the same time, they also
show that many questions remain to be addressed regarding the best tradeoff between the
cost of adding new labelers and the quality of unsupervised learning of the true labels.
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