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Abstract7

Temporal constraint networks are data structures for representing and reasoning about time (e.g.,8

temporal constraints among actions in a plan). Finding and computing negative cycles in temporal9

networks is important for planning and scheduling applications since it is the first step toward10

resolving inconsistent networks. For Simple Temporal Networks (STNs), the problem reduces to11

finding simple negative cycles (i.e., no repeat nodes), resulting in numerous efficient algorithms. For12

Simple Temporal Networks with Uncertainty (STNUs), which accommodate actions with uncertain13

durations, the situation is more complex because the characteristic of a non-dynamically controllable14

(non-DC) network is a so-called semi-reducible negative (SRN) cycle, which can have repeat edges and,15

in the worst case, an exponential number of occurrences of such edges. Algorithms for computing16

SRN cycles in non-DC STNUs that have been presented so far are based on older, less efficient17

DC-checking algorithms. In addition, the issue of repeated edges has either been ignored or given18

scant attention. This paper presents a new, faster algorithm for identifying SRN cycles in non-DC19

STNUs. Its worst-case time complexity is O(mn + k2n + kn log n), where n is the number of20

timepoints, m is the number of constraints, and k is the number of actions with uncertain durations.21

This complexity is the same as that of the fastest DC-checking algorithm for STNUs. It avoids22

an exponential blow-up by efficiently dealing with repeated structures and outputting a compact23

representation of the SRN cycle it finds. The space required to compactly store accumulated path24

information while avoiding redundant storage of repeated edges is O(mk + k2n). An empirical25

evaluation demonstrates the effectiveness of the new algorithm on an existing benchmark.26
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1 Introduction33

A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing34

and reasoning about time [14]. STNUs are attractive for planning and scheduling applications35

because they accommodate not only a wide variety of temporal constraints (e.g., duration36

constraints, deadlines, and inter-action constraints), but also actions with uncertain durations37

(e.g., taxi rides or battery-charging actions) [5, 15, 6, 11, 18]. In STNUs, actions with uncertain38

durations are represented by contingent links. Each STNU has a graphical form where nodes39

represent timepoints; labeled, directed edges represent temporal constraints; and additional40

edges (called LC and UC edges) represent bounds on uncontrollable action durations.41

The most important property of an STNU is called dynamic controllability (DC). An42

STNU is DC if there exists a dynamic strategy for executing its controllable timepoints that43

guarantees that all relevant constraints will be satisfied no matter how the uncertain durations44
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6:2 Finding Negative Cycles in STNUs

turn out—within their specified bounds. There are many polynomial-time algorithms, called45

DC-checking algorithms, for determining whether any given STNU is DC. The fastest is46

the O(mn + k2n + kn log n)-time RUL− algorithm due to Cairo et al. [3], where n is the47

number of timepoints; m, the number of constraints; and k, the number of contingent links.48

Hunsberger and Posenato subsequently presented a modification of RUL−, called RUL2021,49

that has the same worst-case complexity, but is an order of magnitude faster in practice [10].50

The characteristic feature of a non-DC STNU is that it must contain a semi-reducible51

negative (SRN) cycle [12]. In general, any path from X to Y in an STNU graph is semi-52

reducible if it entails a path of the same length from X to Y that contains no LC edges.53

Such entailments can be discovered by generating new edges using constraint-propagation54

(equivalently, edge-generation) rules. Although finding negative cycles in Simple Temporal55

Networks (STNs) reduces to finding simple negative cycles (i.e., no repeat nodes), finding56

SRN cycles in STNUs is more complex, given that even indivisible SRN cycles in a non-DC57

STNU can have repeat edges, and in the worst case an exponential number of such edges [9].58

(An SRN cycle is indivisible if each proper sub-cycle is non-negative or non-semi-reducible.)59

When given a non-DC STNU, DC-checking algorithms simply report that the network is60

not DC; they do not produce an SRN cycle [12, 13, 3, 10]. For applications, it is important61

to identify SRN cycles so that they can be resolved (e.g., by accepting the cost of weakening62

constraints or tightening uncertain durations). Existing algorithms for finding SRN cycles in63

non-DC STNUs [22, 23, 21, 1, 2] are based on older, less efficient DC-checking algorithms;64

and the issue of repeated edges has been ignored or given scant attention. This paper presents65

a new, faster algorithm for computing SRN cycles in non-DC STNUs while also rigorously66

addressing the compact representation of SRN cycles having a large number of repeated67

edges. The new algorithm modifies the RUL2021 algorithm to accumulate path information68

without impacting its time complexity. The additional space required to compactly store69

path information, while avoiding redundant storage of repeated edges, is O(mk + k2n).70

2 Background71

This section summarizes the basic definitions and results for STNUs and then describes the72

RUL2021 DC-checking algorithm that is the starting point for our new algorithm.73

2.1 Simple Temporal Networks with Uncertainty74

A Simple Temporal Network with Uncertainty (STNU) is a triple (T , C, L) where T is a75

set of n real-valued variables; C is a set of m binary difference constraints, each of the form76

Y − X ≤ δ, where X, Y ∈ T and δ ∈ R; and L is a set of k contingent links, each of the form77

(A, x, y, C), where A, C ∈ T and 0 < x < y < ∞ [14]. The timepoints typically represent78

starting or ending times of actions; the constraints can represent deadlines, release times, and79

duration or inter-action constraints; and the contingent links represent actions with uncertain80

durations. For each contingent link (A, x, y, C), A is called the activation timepoint, and C81

the contingent timepoint; and we let ∆C = y − x. The executor of the network typically82

controls A, but not C. The executor only observes the execution of C in real-time, knowing83

only that C will be executed such that C − A ∈ [x, y]. For example, your taxi ride might be84

represented by the contingent link (A, 15, 25, C), where A is when you enter the taxi, C is85

when you arrive at your destination, and C − A ∈ [15, 25] is the uncertain duration, learned86

only when you arrive.87

Each STNU has a graph (T , E) where the timepoints serve as nodes and the constraints88

in C and the contingent links in L correspond to different kinds of labeled, directed edges.89
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For convenience, edges such as X α Y will be notated as (X, α, Y ), where X, Y ∈ T and90

α ∈ R, possibly annotated with an alphabetic letter. In particular, E = Eo ∪ Eℓ ∪ Eu,91

where: Eo = {(X, δ, Y ) | (Y − X) ≤ δ ∈ C} is the set of ordinary edges; Eℓ = {(A, c:x, C) |92

(A, x, y, C) ∈ L}, the set of lower-case (LC) edges; and Eu = {(C, C:−y, A) | (A, x, y, C) ∈ L},93

the set of upper-case (UC) edges. Note that each contingent link has a corresponding pair of94

edges: an LC edge representing that the contingent duration might take on its minimum95

value x, and a UC edge representing that it might take on its maximum value y.96

Tc denotes the set of contingent timepoints; and Tx = T \Tc the set of executable97

(or controllable) timepoints. An STNU is dynamically controllable (DC) if there exists a98

dynamic strategy for executing its controllable timepoints such that all constraints in C will99

necessarily be satisfied no matter how the contingent durations turn out within their specified100

bounds [14, 7]. An execution strategy is dynamic if it can react, in real-time, to observations101

of contingent executions. The RUL− algorithm [3] is the DC-checking algorithm with the102

best worst-case time complexity: O(mn + k2n + kn log n). However, RUL2021, which is a103

modification of RUL−, has been shown to be an order-of-magnitude faster on a variety of104

STNU benchmarks, although having the same theoretical complexity [10].105

2.2 The RUL2021 DC-Checking algorithm106

This section summarizes important features of the RUL2021 algorithm. Like all DC-checking107

algorithms, it operates on the STNU graph, using edge-generation rules to generate new108

edges representing constraints that must be satisfied by any dynamic execution strategy.109

Table 1 shows the edge-generation rules used by RUL2021. The R and L rules (for Relax and110

Lower Case, respectively) are used to back-propagate distance information in the LO-graph111

(i.e., the subgraph comprising the LC and ordinary edges). The wavy arrows represent112

paths in the LO-graph that have already been explored. In the R rule, back-propagation113

continues along the ordinary edge (P, v, Q) to generate the distance information represented114

by the dotted edge (P, v + w, Ci). In the L rule, back-propagation continues along the LC115

edge (Aj , cj :xj , Cj) to generate the distance information represented by the dotted edge116

(Aj , xj + w, Ci). RUL2021 uses the L and R rules only to accumulate distance information;117

the dotted edges are not inserted into the STNU graph. But RUL2021 does insert the edges118

generated by the Ulp rule: ordinary edges that effectively bypass UC edges. For example, in119

the table, the wavy path (P, v, Ci) represents distance information previously generated by120

the R and L rules. This “edge” combines with the UC edge (Ci, Ci:−yi, Ai) to generate the121

(blue and dashed) bypass edge (P, v − yi, Ai).122

Figure 1 shows how RUL2021 processes a (red) UC edge, assuming that ∆C = 12. First,123

it uses the R and L rules to back-propagate from C along LO-edges, collecting distance124

information indicated by the dotted arrows. (The rules used to generate these edges are in125

parentheses.) Back-propagation continues as long as the distance stays less than ∆C . Since126

Table 1 The edge-generation rules for the RUL2021 algorithm

Rule Graphical representation Applicability Conditions

R P Q Ci
v w

v + w
Q ∈ TX , w < ∆Ci , Ci ∈ TC

L Aj Cj Ci
cj :xj w

xj + w
Cj ̸≡ Ci, w < ∆Ci , Ci ∈ TC

Ulp P Ci Ai
v Ci:−yi

v − yi

(Ai, xi, yi, Ci) ∈ L, v ≥ ∆Ci

TIME 2024
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ACXC2A2WTS

(∆C = 12)

C:−2013c2:2352
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Figure 1 RUL2021 generating a (blue and dashed) bypass edge for a (red) UC edge
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Figure 2 A cycle of interruptions detected by RUL2021

the path from T to C has length 14 ≥ ∆C , back-propagation stops. Then the Ulp rule is127

applied to (T, 14, C) and (C, C:−20, A) to generate the (dashed) bypass edge (T, −6, A).128

There can be many paths emanating backward from C in the LO-graph. To ensure that129

only shortest distances are accumulated, back-propagation is guided by a priority queue and a130

potential function to re-weight the edges to non-negative values, as in Johnson’s algorithm [4],131

except that here the potential function is a solution to the LO-graph, viewed as an STN.132

The potential function is initialized by a one-time call to the Bellman-Ford algorithm [4].133

Once all of the bypass edges are computed for a given UC edge, they are inserted into134

the LO-graph, which typically requires updating the potential function. Since all of the135

new edges terminate at A, this updating can be carried out by a separate Dijkstra-like136

back-propagation from A using a priority queue and the pre-existing potential function. If137

all of the UC edges can be successfully processed in this way, then RUL2021 declares the138

STNU to be DC.139

However, three kinds of events can signal that the STNU is not DC:140

1. Failure to update the potential function. Inserting new bypass edges might cause the141

LO-graph to become inconsistent (as an STN), which would be detected by encountering142

a negative cycle in the LO-graph while trying to update the potential function.143

2. Cycle of interruptions. When processing a UC edge E1, back propagation from144

its contingent timepoint C1 might bump into a different UC edge E2. If so, RUL2021145

interrupts its processing of E1 to process E2. After finishing with E2, back propagation146

from E1 continues. However, should a cycle of such interruptions occur, for example, as147

illustrated in Figure 2, then the network cannot be DC. In the figure, the UC edges are148

colored red; distances along LO-paths computed by back-propagation using the L and R149

rules are indicated by dotted arrows; and the relevant contingent links are (A1, 1, 9, C1),150

(A2, 2, 8, C2) and (A3, 3, 7, C3). Now back propagation from C1 should continue as long151

as the dotted distances are less than ∆C1 = 9 − 1 = 8, but is interrupted by the UC152

edge (C2, C2:−8, A2). Similarly, back-propagation from C2 should continue as long as153

the dotted distances are less than ∆C2 = 8 − 2 = 6, but is interrupted by the UC154

edge (C3, C3:−7, A3). Finally, back propagation from C3 should continue as long as the155

dotted distances are less than ∆C3 = 7 − 3 = 4, but is interrupted by the first UC edge,156

thereby completing the cycle. At this point, RUL2021 signals that the STNU is not DC.157

This is justified since each dotted distance being less than the corresponding ∆Ci
value158

ensures that the length of the cycle is negative; and a negative cycle in the OU-graph159

(i.e., the subgraph comprising ordinary and UC edges) represents an impossible-to-satisfy160
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A C

C W X

C:−9
c
:1 4

1 −3

2−1

A C

C W X

C:−9

c
:1 −3

4 1

2

Figure 3 Two different CC loops associated with a contingent link (A, 1, 9, C)

Algorithm 1 The FindSRNC algorithm
Input: G = (T , E = Eo ∪ Eℓ ∪ Eu), an STNU graph
Output: (negCycle, edgeAnn), where negCycle is an SRN cycle and edgeAnn is a hash table of

path annotations for edges in the cycle; or (∅, ∅) if the STNU is DC
1 glo ··= new global data structure // Fields: pf, status, intBy, edgeAnnotation
2 glo.pf ··= BellmanFord(Gℓo) // Initialize potential function for LO-graph
3 if glo.pf == ⊥ then return BFCT(Gℓo)
4 glo.edgeAnnotation ··= new empty hash table
5 glo.status ··= [nYet, . . . , nYet] // Initial processing status of the k UC edges
6 glo.intBy ··= [⊥, . . . , ⊥] // k-vector: records interruptions
7 foreach (C, C:−y, A) ∈ Eu do
8 negCycle ··= RulBackProp(G, (C, C:−y, A), glo)
9 if negCycle ̸= ∅ then return (negCycle, glo.edgeAnnotation)

10 return (∅, ∅)

constraint for a dynamic execution strategy.161

3. CC loops. Back propagation from a UC edge (C, C:−y, A) can also be blocked if an162

LO-path from C back to C of length less than ∆C is encountered. Such a path is called163

a CC loop [10]. A CC loop does not necessarily imply that the STNU is not DC; but164

it sometimes does. Figure 3 illustrates two scenarios in which back-propagation from C165

reveals a CC loop of length 2 < 8 = ∆C . However, the lefthand STNU is not DC, while166

the righthand one is. The key difference, according to Morris’ analysis of semi-reducible167

paths [12], is that the lefthand graph contains a negative LO-path emanating from C (to168

X) which can be used to generate the (dashed, green) bypass edge (A, −1, X), thereby169

creating a negative cycle in the OU-graph from A to X to C to A, whereas the righthand170

graph has no such path.171

3 The FindSRNC (Find Semi-Reducible Negative Cycle) Algorithm172

This section introduces our new FindSRNC algorithm, which modifies RUL2021 to efficiently173

accumulate path information. To contrast FindSRNC and RUL2021, we have preserved the174

general structure of RUL2021, although to improve readability we have expanded the rather175

cryptic names of the original helper algorithms. Modifications are highlighted in green.176

The pseudocode for FindSRNC is in Algorithm 1. When given a non-DC STNU as input,177

it outputs a compact representation of an SRN cycle in the form (negCycle, edgeAnn), where178

negCycle is a negative cycle of edges in the LO- or OU-graph, depending on how the cycle179

arose; and edgeAnn is a hash table of (key, value) pairs, where each key identifies an (ordinary)180

bypass edge generated by the algorithm, and value is the path used to generate that edge. It181

is efficient to present the SRN cycle in this way since, in the worst case, unpacking all of the182

edges in the cycle could result in an exponential number of repeated edges.183

Like RUL2021, FindSRNC starts by calling the Bellman-Ford algorithm to create an184

TIME 2024
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initial potential function for the LO-graph which, if successful, is stored in the pf field of a185

glo data structure. (The glo data structure contains global information accessible across186

multiple recursive calls to process UC edges.) If Bellman-Ford fails, then FindSRNC calls the187

O(mn)-time BFCT algorithm [19] to return a negative cycle for the LO-graph (an STN). A188

negative cycle in the LO-graph is a trivial case of an SRN cycle for an STNU.189

If Bellman-Ford succeeds, FindSRNC initializes glo.edgeAnnotation to a new hash table190

that will record the paths from which any bypass edges are derived. The glo.status field191

tracks the processing status of each UC edge, as in RUL2021. The glo.intBy field, initially192

a vector of ⊥ entries, stores information about when the processing of one UC edge is193

interrupted by another. Finally, FindSRNC iterates through the UC edges, processing each194

with a call to RulBackProp (Algorithm 2). Because RulBackProp recursively processes any195

interrupting UC edges, by the time FindSRNC calls RulBackProp on some UC edge, it may196

have already been processed. The status field is used to avoid redundant processing.197

RulBackProp198

The pseudocode for the RulBackProp algorithm is in Algorithm 2. It processes a single UC199

edge E = (C, C:−y, A) while integrating the recursive processing of any interrupting UC200

edges. At Line 2, if E has already been processed, it immediately returns ⊤. At Line 3,201

it checks whether the processing of E has already been started, but not yet completed,202

which implies a negative cycle of interruptions. In this case, RulBackProp calls AccNegCycle203

(Algorithm 3) to collect the relevant path information accumulated in the glo.intBy vector,204

which is then returned as a compact representation of an SRN cycle. (More will be said205

about how the information in glo.intBy is generated.)206

In the pseudocode, we use +++ as a concatenation operator that can be applied to edges or207

paths. For example, if e1 is an edge, and π1 and π2 are paths, then π1 +++ e1 +++ π2 represents208

their concatenation into a single path. In addition, we use ⟨⟩ to denote the empty path.209

At Lines 4–7, RulBackProp prepares to process a UC edge E = (C, C:−y, A). As in210

RUL2021, ccLoop is a flag used to signal the discovery of a CC loop; and dist records, for211

each encountered timepoint X, the distance from X to C in the LO-graph. A new field,212

path, records the paths from each X to A (via C). Back-propagation from C is governed by213

a priority queue Q, initialized at Lines 8–10 to include each X connected to C by an edge.214

In each iteration of the while loop (Lines 12–23), RulBackProp either starts or resumes215

the processing of E, first (at Line 13) by calling TryBackProp (Algorithm 4). TryBackProp216

(described later) back-propagates along LO-edges, but does not generate or insert any bypass217

edges. Instead, it simply collects the relevant distance and path information, while also218

keeping track of whether it encountered any unstarted (i.e., interrupting) UC edges or CC219

loops. At Line 14, RulBackProp checks whether TryBackProp found an SRN cycle, in which220

case RulBackProp returns that cycle. Otherwise, at Line 15, RulBackProp checks whether221

TryBackProp encountered any interrupting UC edges. If so, for each interrupting UC edge222

EX (Lines 16–19), it uses glo.intBy [E] to record the interruption and then attempts to223

recursively process EX . If all interrupting UC edges are successfully processed, it clears224

the glo.intBy [E] entry (Line 20) and prepares for the next iteration of the while loop by225

re-initializing the priority queue (Lines 21–22) so that processing E can be resumed, starting226

from the activation timepoints of the no-longer-interrupting UC edges.227

Once all back-propagation from E is done, RulBackProp checks, at Line 24, whether228

any CC loops were encountered. If so, it calls FwdPropNDC to carry out a separate forward229

propagation from C along LO-edges, checking whether any LO-path, PCX , from C to some X,230

can be used to bypass the LC edge e = (A, c:x, C). If so, there must be an SRN cycle,231
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Algorithm 2 The RulBackProp algorithm

Input: G = (T , E), STNU graph; E = (C, C:−y, A) ∈ Eu, a UC edge; glo, a global structure
Output: negCycle, an SRN cycle; or ∅ if E successfully processed

1 h ··= glo.pf // Potential function for LO-graph
2 if glo.status[E] == done then return ⊤ // E already done
3 if glo.status[E] == started then return AccNegCycle(glo.intBy, E) // Cycle of interrupts
4 glo.status[E] ··= started // Prepare to start processing the UC edge E
5 loc ··= new local struct; loc.ccLoop ··= ⊥ // No CC loop found yet
6 loc.dist ··= [∞, . . . , ∞] // distance from each TP to C

7 loc.path ··= [⟨⟩, . . . , ⟨⟩] // path from each TP to A (via E)
8 Q ··= a new priority queue // Priority of each X is h(X) + δxc, adjusted dist. from X to C
9 foreach (X, δxc, C) ∈ Eo do

10 Q.ins(X, h(X) + δxc); loc.path[X] ··= (X, δxc, C)+++ (C, C:−y, A)
11 continue? ··= ⊤
12 while continue? do // Start or resume processing of UC edge E
13 negCycle ··= TryBackProp(G, E, Q, glo, loc)
14 if negCycle ̸= ∅ then return negCycle
15 if loc.UnstartedUCs ̸= ∅ then // Process unstarted UC-edges
16 foreach (EX , X) ∈ loc.UnstartedUCs do
17 glo.intBy[E] ··= (EX , loc.path[X])
18 negCycle ··= RulBackProp(G, EX , glo)
19 if negCycle ̸= ∅ then return negCycle
20 glo.intBy[E] ··= ⊥ // All interruptions of E completed
21 Q.clear() // Prepare Q for next iteration of WHILE
22 foreach (EX , X) ∈ loc.UnstartedUCs do Q.ins(X, loc.dist[X] + glo.pf[X])
23 else continue? ··= ⊥ // Back-prop. from E completed
24 if loc.ccLoop then // CC-loop found; must initiate forward propagation
25 (X, PX) ··= FwdPropNDC(G, C, ∆C , loc, glo.pf) // ∆C = y − x for cont. link (A, x, y, C)
26 // If (A, c:x, C) can be reduced away, then return SRN cycle
27 if (X, PX) ̸= ∅ then return (A, c:x, C)+++ PX +++ loc.path[X]
28 foreach X ∈ T \{C} do // Generate bypass edges using Ulp rule
29 δxc ··= loc.dist[X] // δxc = ∞ means node not reachable
30 if ∆C ≤ δxc < ∞ then
31 G.insertOrdEdge(X, δxc − y, A)
32 glo.edgeAnnotation.put((X, A), loc.path[X])
33 edges? ··= ⊤

34 if edges? then (glo.pf, negCycle) ··= UpdatePotFn(G, A, glo.pf)
35 if glo.pf == ⊥ then return negCycle
36 glo.status[E] ··= done
37 return ∅ // Processing of E successfully completed

e+++ PCX +++ loc.path[X], where loc.path[X] is the LO-path from X to A obtained by the earlier232

back-propagation from C [10]. Hence, FwdPropNDC returns (X, PCX). For the STNU on the233

left of Figure 3, PCX is (C, 1, W )+++ (W, −3, X), and loc.path[X] is (X, 4, C)+++ (C, C:−9, A).234

If forward propagation fails to find an SRN cycle, then RulBackProp finally uses the235

information in loc.dist to generate edges that bypass the UC edge E (Lines 28–33). These236

are the only edges that FindSRNC actually inserts into the STNU. For each bypass edge237

(X, δxc −y, A), the corresponding path that has been accumulated in loc.path[X] is recorded238

in the glo.edgeAnnotation hash table (Line 32). (As discussed below, it is TryBackProp239

TIME 2024
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Algorithm 3 The AccNegCycle algorithm (new)
Input: glo.intBy, vector recording a cycle of interruptions; E ∈ Eu, a UC edge in the cycle
Output: negCycle, an SRN cycle containing E

1 negCycle ··= ⟨⟩
2 (E′, P ′) ··= glo.intBy[E] // P ′ is path used to generate E′

3 while E′ ̸= E do
4 negCycle ··= P ′ +++ negCycle // Accumulate P ′ into cycle
5 (E′, P ′) ··= glo.intBy[E′] // Fetch next interrupter
6 return P ′ +++ negCycle

Algorithm 4 The TryBackProp algorithm

Input: G = (T , E), an STNU graph; E = (C, C:−y, A) ∈ Eu; Q, a priority queue; glo, global
struct; loc, local struct

Output: negCycle, an SRN cycle; or ∅ if no SRN cycle found.
1 h ··= glo.pf // Potential function, a solution to the LO-graph
2 loc.UnstartedUCs ··= {} // Will collect unstarted UC edges
3 while Q ≠ ∅ do

// keyX = distance from X to C, adjusted by h

4 (X, keyX) ··= Q.extractMinNode()
5 δxc ··= keyX − h(X) // δxc = distance from X to C in Gℓo

6 loc.dist[X] ··= δxc // Record shorter length
// If X is an ATP, then EX is corresponding UC-edge; else ⊥

7 EX ··= G.UCEdgeFromATP(X)
8 if δxc < ∆C then // Continue back-propagation

// Case 1: Found CC loop of length δxc < ∆C ; signal need for fwd prop
9 if X ≡ C then loc.ccLoop ··= ⊤

// Case 2: EX is an unstarted UC-edge; accumulate it
10 else if glo.status[EX ] == nYet then loc.UnstartedUCs.add((EX , X))

// Case 3: Cycle of interruptions: not DC
11 else if glo.status[EX ] == started then
12 glo.intBy[E] ··= (EX , loc.path[X])
13 return AccNegCycle (glo.intBy, EX)
14 else // Case 4: Continue back-propagation along LO-edges
15 foreach (e, δwc) ∈ ApplyRL(G, X, ∆C , δxc) do
16 newKey ··= δwc + h(W )
17 if δwc < loc.dist[W ] and (W ̸∈ Q or newKey < Q.key(W )) then

// Accumulate new path from W to C

18 Q.insOrDecrKey(W, newKey)
19 loc.path[W ] ··= e+++ loc.path[X]

20 return ∅

that accumulates the path information in loc.path[X].) If any bypass edges are inserted,240

then RulBackProp (at Line 34) calls UpdatePotFn (Algorithm 7, discussed later) to update241

the potential function for the LO-graph, whence the processing of E is completed (Line 36).242

TryBackProp243

Pseudocode for TryBackProp (called phaseOne in RUL2021) is given as Algorithm 4. For a244

UC edge E = (C, C:−y, A), it propagates backward from C along LO-edges as long as the245
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Algorithm 5 The ApplyRL algorithm
Input: G, an STNU graph; X ∈ T ; ∆C ; and δxc < ∆C

Output: A list of pairs, (e, δwc), where e is an LO-edge from W to X, and δW C = |e| + δxc.
1 edgeDistPairs ··= {}

// If X is a contingent timepoint Ci, then apply the L rule to (Ai, ci:xi, Ci) and (Ci, δxc, C)
2 if X ≡ Ci ∈ TC then edgeDistPairs.add(((Ai, ci:xi, Ci), xi + δxc))
3 else // Otherwise, apply the R rule to (W, δwx, X) and (V, δvc, C)
4 foreach (W, δwx, X) ∈ Eo do edgeDistPairs.add(((W, δwx, X), δwx + δxc))
5 return edgeDistPairs

accumulated distance remains less than ∆C = y − x. (Recall the condition w < ∆Ci
for the246

R and L rules in Table 1.) Its while loop (Lines 3–19) uses the priority queue initialized247

by RulBackProp and the potential function updated by RulBackProp to explore shortest248

paths in the LO-graph. At Lines 4–6, it pops a node X off the queue, converts its key into249

the distance from X to C, and assigns it to loc.dist[X]. At Line 7, it checks whether250

X is an activation timepoint and, if so, sets EX to the corresponding UC edge. Next, if251

loc.dist[X] < ∆C (Line 8), TryBackProp considers four cases (Lines 9-19).252

In Case 1, back propagation has circled back to C, prompting TryBackProp to set the253

ccLoop flag. In Case 2, back propagation has encountered another UC edge EX whose254

processing has not yet been started; so TryBackProp pushes the interrupting edge onto a255

list of as-yet-unstarted UC edges (to be processed later by RulBackProp). In Case 3, back256

propagation has hit a UC edge EX whose processing has already been started, but not yet257

finished. This implies a cycle of interruptions and, hence, an SRN cycle. In preparation for258

terminating, the algorithm records the interruption of E by EX , along with the path from X259

to A accumulated in loc.path[X]. Then it calls AccNegCycle (Algorithm 3) to recursively260

collect the information accumulated in the cycle of interruptions to return an SRN cycle.261

In Case 4, back propagation continues past X, and path information is accumulated. At262

Line 15, TryBackProp calls ApplyRL (Algorithm 5), which applies the R rule to all ordinary263

edges coming into X and, if X happens to be a contingent timepoint, applies the L rule to264

the corresponding LC edge coming into X. ApplyRL returns a list of pairs, each of the form265

(e, δW C), where e is an LO-edge from W to X, and δW C is the length of the LO-path from266

W to C via X. For each such pair, TryBackProp (at Lines 15–19) first checks whether the267

path from W to C represents a new shorter LO-path and, if so, updates the key for W in the268

priority queue and incrementally accumulates the relevant path information in loc.path[W ].269

FwdPropNDC270

The FwdPropNDC algorithm (Algorithm 6) propagates forward from C along LO-edges checking271

whether there is a negative-length path from C to some X that can be used to bypass the LC272

edge (A, c:x, C). It is the same as in RUL2021, except that it accumulates path information273

in a vector called fwdPath. At Lines 2–3, a priority queue is initialized to contain just C, with274

fwdPath[C] = ⟨⟩. The priority queue uses the same potential function as TryBackProp to275

effectively re-weight the LO-edges. As each timepoint X is popped from the queue (Line 5),276

the distance from X to C that was determined during back-propagation and stored in277

loc.dist[X] is compared to ∆C . (Generating an edge to bypass the LC edge using the path278

from C to X will only create an SRN cycle if dist[X] < ∆C [10].) If dist[X] < ∆C and279

d(C, X) < 0 (i.e., an appropriate negative-length path has been found), then FwdPropNDC280

terminates, returning (X, fwdPath[X]) (Line 8). Otherwise, forward propagation continues281
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Algorithm 6 The FwdPropNDC algorithm
Input: G, an STNU graph; C ∈ TC ; ∆C = y − x; loc, local struct; h, potential function.
Output: (X, PCX), if path PCX can be used to reduce away the LC edge (A, c:x, C); else ∅

1 fwdPath ··= {⟨⟩, . . . , ⟨⟩} // For each X, fwdPath[X] is an LO-path from C to X

2 Q ··= new priority queue // Key keyX = d(C, X) − h(C)
3 Q.insert(C, −h(C)) // Queue initially contains only C

4 while Q ≠ ∅ do
5 (X, keyX) ··= Q.extractMinNode()
6 d(C, X) ··= keyX + h(X) // Distance from C to X in Gℓo

7 if loc.dist[X] < ∆C then // If distance from X to C < ∆C

// Check if the path CX can reduce-away the LC-edge
8 if d(C, X) < 0 then return (X, fwdPath[X])
9 foreach (X, δxy, Y ) ∈ Eℓ ∪ Eo do // Iterate over LO-edges emanating from X

10 newKey ··= d(C, X) + δxy − h(Y )
11 if Y ̸∈ Q or newKey < Q.key(Y ) then
12 Q.insOrDecrKey(Y, newKey)
13 fwdPath[Y ] ··= fwdPath[X]+++ (X, δxy, Y )

14 return ∅ // Was unable to reduce-away the LC-edge

Algorithm 7 The UpdatePotFn algorithm
Input: G, an STNU graph; A, an activation timepoint; h, a potential function for Gℓo, excluding

edges ending at A

Output: (h′, negCycle), where h′ is either a potential function for Gℓo (including edges
terminating at A); or ⊥, the latter indicating that negCycle is a negative cycle

1 h′ ··= copy of h; path ··= [⟨⟩, . . . , ⟨⟩]
2 Q ··= new priority queue; Q.insert(A, 0) // Initialize queue for back-prop from A

3 while Q ≠ ∅ do
4 (V, keyV ) ··= Q.extractMinNode()
5 foreach ((U, δ, V ) ∈ Eo) do // Back-propagate along ordinary edges ending at V

6 negCycle ··= UpdateVal((U, δ, V ), h, h′, Q, path)
7 if negCycle ̸= ∅ then return (⊥, negCycle)
8 if V ∈ TC then // V is contingent; back-propagate along LC edge (AV , v:xV , V )
9 negCycle ··= UpdateVal((AV , xV , V ), h, h′, Q, path)

10 if negCycle ̸= ∅ then return (⊥, negCycle)

11 return (h′, ∅)

from X, accumulating relevant path information (Lines 9–13). If the queue is exhausted282

without finding a way to bypass the LC edge, FwdPropNDC returns ∅ (Line 14).283

UpdatePotFn284

When RulBackProp inserts edges that bypass a UC edge E, it changes the LO-graph. Hence,285

the potential function for the LO-graph typically needs to be updated. The pseudocode for286

the UpdatePotFn function is given as Algorithm 7.287

Since all bypass edges for E necessarily point at its activation timepoint A, UpdatePotFn288

propagates backward from A along LO-edges as long as changes to the potential function,289

h, are required. This function and its helper UpdateVal (Algorithm 8) are the same as290

in RUL2021 except that path information is accumulated (Algorithm 8, Line 6) so that if291



L. Hunsberger and R. Posenato 6:11

Algorithm 8 The UpdateVal algorithm

Input: (U, δ, V ), an edge; h, h′, potential fns.; Q, priority queue; and path, a vector of path info
Output: negCycle, an SRN cycle; or ∅ if h′ was successfully updated to satisfy (U, δ, V )

1 Side Effect: Modifies Q, h′ and path
2 if h′(U) < h′(V ) − δ then
3 h′(U) ··= h′(V ) − δ

// If back propagation has cycled back to A, return the cycle
4 if Q.state(U) == alreadyPopped then return (U, δ, V )+++ path[V ]
5 Q.insOrDecrKey(U, h(U) − h′(U))
6 path[U ] ··= (U, δ, V )+++ path[V ]
7 return ∅

back-propagation ever cycles all the way back to A, the implied SRN cycle can be returned292

(Algorithm 8, Line 4).293

Computational Complexity294

FindSRNC performs more operations than RUL2021, mostly by accumulating path information295

during propagation. For lack of space, we simply note that the most time-consuming operation296

is prepending an edge onto the front of an existing path, which happens at most once per edge297

visited. Since the prepending operation (+++ ) can be realized in constant time, the worst-case298

time complexity of FindSRNC is the same as that of RUL2021: O(mn + k2n + kn log n).299

Regarding the extra space requirements of FindSRNC, the most costly is the space needed300

by TryBackProp for accumulating path information in the loc.path structures. TryBackProp301

is called at most 2k times [3, 10]. Each call explores at most (m + nk) edges. (FindSRNC302

inserts at most nk edges overall.) Each edge exploration involves prepending an existing path303

with an edge, which uses only constant space. So the overall space complexity across all calls304

to TryBackProp is O(mk + k2n). Similar remarks apply to FwdPropNDC and UpdatePotFn.305

The edgeAnnotation hash table has at most nk entries: one for each bypass edge. Each306

entry is a pointer to a loc.path entry. So the total space required is O(nk). The compact307

SRN cycle generated by AccNegCycle is the concatenation of at most k paths, each with at308

most n edges, for a total of at most nk edges, which is dominated by the O(mk + k2n) space309

discussed above. This compact cycle, together with the information in the edgeAnnotation310

hash table, avoids redundantly storing repeated structures. In this way, it uses polynomial311

space to implicitly represent a cycle that, if fully expanded, might have exponentially many312

edges. Similar remarks apply to the cycles returned by FwdPropNDC and UpdatePotFn.313

Magic Loop Example314

Hunsberger [8] identified a family of STNUs in which the only SRN cycle, called a magic loop,315

has an exponential number of edges. Since each STNU has at most n2 +2k edges, magic loops316

necessarily contain a large number of repeated edges. In particular, a magic loop of order k317

has k contingent links, but 3(2k)−2 edges. The top of Figure 4 shows an STNU whose (brown)318

LC edges are e1 = (A1, c1:1, C1), e2 = (A2, c2:1, C2), and e3 = (A3, c3:1, C3); and whose (red)319

UC edges are E1 = (C1, C1:−3, A1), E2 = (C2, C2:−10, A2), and E3 = (C3, C3:−36, A3). The320

bypass edges generated by FindSRNC are dashed: those bypassing E1 in green, E2 in purple,321

and E3 in blue. Each bypass edge is also annotated by a path, where: π1 = (C2, 8, C1)+++ E1;322

π2 = (C3, 34, C1)+++ E1; π3 = (X, 48, C1)+++ E1; π4 = π2 +++ e1 +++ (C1, −1, C2)+++ E2; π5 =323

π3 +++ e1 +++ (C1, −1, C2)+++ E2; and π6 = π5 +++ e2 +++ π1 +++ e1 +++ (C1, −7, C3)+++ E3. The magic loop for324
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Figure 4 A sample STNU (top) and the magic loop of order 3 (bottom) hiding within it

Figure 5 A screenshot of FindSRNC in action

this STNU is at the bottom of the figure. It has 22 edges. E1 and e1 appear four times each;325

several other edges, twice each. After all UC edges have been processed, UpdatePotFn finds326

a negative cycle in the LO-graph: π6 +++ e3 +++ π4 +++ e2 +++ π1 +++ e1 +++ (C1, −29, X). This information327

is compactly stored in the cycle returned by FindSRNC. For higher-order magic loops, the328

number of edges grows exponentially, but the space used by FindSRNC is bounded by mk+nk2.329

4 Empirical Evaluation330

In this section, we present a possible implementation of the FindSRNC algorithm and one its331

evaluation in a public benchmark.332

The proposed algorithm was implemented as a proof-of-concept prototype in the (freely333

available) CSTNU Tool, version 1.42 [17]. The tool enables users to create different kinds334

of temporal constraint networks and to verify automatically some properties like dynamic335

controllability or consistency (for some kinds of networks). In particular, as concerns STNUs,336

it allows one to verify the dynamic controllability and, in case the network is not DC, to337

obtain the semireducible negative cycle that determines the non-controllability.338

The screenshot Figure 5 shows the CSTNU Tool after the execution of FindSRNC algorithm339

on the STNU depicted in Figure 4. On the left side, there is the initial network that can be340

edited. On the right side, there is the checked network with the semireducible negative cycle341

emphasized in red. The status bar above the network on the right gives a summary of the342

FindSRNC result. The extended result (like the expanded semireducible negative cycle) is343
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Figure 6 Experimental results

saved in a logging file associated with the execution.344

We empirically evaluated FindSRNC on a published benchmark [16] to confirm that the345

execution times of FindSRNC and RUL2021 are equivalent, and to highlight the characteristics346

of the SRN cycles in non-DC instances. Our implementations are publicly available [17]. We347

ran them on a JVM 21 with 8 GB of heap memory on a Apple PowerBook/M1 Pro.348

For each n ∈ {500, 1000, 1500, 2000, 2500}, the benchmark contains 200 randomly gener-349

ated non-DC STNUs, each having n nodes, n/10 contingent links, and m ≈ 3n edges. For350

each sub-benchmark (i.e., for each n), we used the first 100 instances. For each instance,351

RUL2021 checked only the non-DC status; FindSRNC also returned an SRN cycle.352

The left-hand plot of Figure 6 shows the average execution times of the two algorithms353

for each sub-benchmark. These results highlight that computing the SRN cycle does not354

require significant computational overhead. More interesting is that by analyzing the cycles355

computed by FindSRNC, we can evaluate the characteristics of the non-DC instances in the356

benchmark. The table in Figure 6 shows that, for each n, the average number of edges in357

the SRN cycle (i.e., the SRN cycle length) is quite small (less than 9); and most instances358

present a simple SRN cycle (i.e., an SRN cycle having no (annotated) bypass edges and,359

hence, comprising only edges that were already present in the input STNU).360

FindSRNC outputs a non-simple SRN cycle very compactly. However, we also computed361

the fully expanded version of each cycle, recursively replacing each bypass edge by the362

annotated path from which it was derived. The average length of the expanded cycles363

increased to a maximum of 16 in each sub-benchmark, revealing that an SRN cycle can364

involve more edges from the original STNU than one might suspect from the compact version.365

Finally, we checked that no instance leads to an expanded SRN cycle with any repeated366

edges. Since the benchmark was built to simulate temporal business processes organized on367

five lanes, the absence of complex SRN cycles in 500 random instances suggests that such368

instances may only rarely appear in practice; but if they do, FindSRNC will find them.369

5 Conclusion370

This paper presented the FindSRNC algorithm that modifies the fastest DC-checking algorithm371

for STNUs to accumulate path information while also rigorously addressing the compact372

representation of the SRN cycles it outputs. When given an overconstrained STNU, FindSRNC373

can be used to identify constraints to relax or contingent durations to tighten. It can also374

be used as a supporting process in an iterative algorithm for finding a DC STNU that well375

approximates a Probabilistic Simple Temporal Network [20, 23, 21, 1].376
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