
Converting Simple Temporal Networks with Uncertainty
into Minimal Equivalent Dispatchable Form

Luke Hunsberger1, Roberto Posenato2

1Vassar College, Poughkeepsie, NY 12604 USA
2Università di Verona, Verona, Italy

hunsberger@vassar.edu, roberto.posenato@univr.it

Abstract
A Simple Temporal Network with Uncertainty (STNU) is a
structure for representing and reasoning about time constraints
on actions with uncertain durations. An STNU is dynamically
controllable (DC) if there exists a dynamic strategy for exe-
cuting the network that guarantees that all of its constraints
will be satisfied no matter how the uncertain durations turn
out—within their specified bounds. However, such strategies
typically require exponential space. Therefore, it is essential
to convert a DC STNU into a so-called dispatchable form for
practical applications. For a dispatchable STNU, the relevant
portions of a real-time execution strategy can be incrementally
constructed during execution, requiring only O(n2) space
while also providing maximum flexibility but requiring only
minimal computation during execution. Existing algorithms
can generate equivalent dispatchable STNUs, but with no guar-
antee about the number of edges in the output STNU. Since
that number directly impacts the computations during exe-
cution, this paper presents a novel algorithm for converting
any dispatchable STNU into an equivalent dispatchable net-
work with minimal edges. The complexity of the algorithm
is O(kn3), where k is the number of actions with uncertain
durations, and n is the number of timepoints. The paper also
provides an empirical evaluation of the order-of-magnitude
reduction of edges obtained by the new algorithm.

Introduction and Related Work
Temporal constraint networks facilitate representation and
reasoning about temporal constraints on activities. Among
the many kinds of temporal constraint networks in the litera-
ture, Simple Temporal Networks with Uncertainty (STNUs)
are one of the most important because they allow the explicit
representation of actions with uncertain durations (Morris,
Muscettola, and Vidal 2001). In an STNU, an action with
uncertain duration is represented by a contingent link that
specifies bounds on the duration’s uncertainty. A contingent
link also represents that a scheduler cannot decide the ac-
tion’s duration but can only observe it at runtime. Therefore,
for STNUs, it is important to know whether a strategy exists
for executing the network that guarantees that all of its con-
straints will be satisfied no matter how the uncertain durations
play out. If such a strategy exists, the STNU is said to be dy-
namically controllable (DC). The literature includes several

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

polynomial-time algorithms for checking the DC property
that differ in their approaches to finding possible inconsisten-
cies, characterized by different kinds of negative cycles (Stedl
and Williams 2005; Morris 2006, 2014; Nilsson, Kvarnstrom,
and Doherty 2014; Cairo, Hunsberger, and Rizzi 2018). How-
ever, the algorithms are not constructive (i.e., they do not
output actual execution strategies in positive instances).

For DC STNUs, an execution strategy can be specified
by pre-computing all possible incremental schedules for all
combinations of uncertain action durations. However, such
a strategy requires exponential space and, therefore, is im-
practical. So, for practical applications, Morris (2014, 2016)
proposed converting DC STNUs into an equivalent dispatch-
able form. Hunsberger and Posenato (2024) showed that for
a dispatchable STNU, a dynamic execution strategy can be
generated incrementally during execution, using only O(n2)
space, where n is the number of timepoints. Moreover, such
a strategy provides maximum flexibility for the action sched-
uler but requires minimal real-time computation.

Most DC-checking algorithms do not guarantee a dispatch-
able output, but Morris (2014) indicated that his DC-checking
algorithm could be modified to do so. We call that version of
his algorithm Morris14. More recently, Hunsberger and Pose-
nato (2023) presented an algorithm for creating an equivalent
dispatchable STNU called FDSTNU. Although these are the
only known algorithms that guarantee an equivalent dispatch-
able output, they do not make any claims about the number
of edges in the output. Since the number of edges directly
impacts computations during execution, this paper presents a
novel algorithm for converting any dispatchable STNU into
an equivalent dispatchable network with a minimal number
of edges. The complexity of the algorithm is O(kn3), where
k is the number of actions with uncertain durations, and n is
the number of nodes in the network. The paper provides an
empirical evaluation of the order-of-magnitude reduction in
the number of edges obtained by the new algorithm.

Background
This section summarizes relevant definitions and results for
the dispatchability of STNs and STNUs.
Definition 1 (STN). A Simple Temporal Network (STN)
is a pair S = (T , C), where T is a set of real-valued
variables called timepoints (TPs) and C is a set of con-
straints of the form (Y − X ≤ δ), for some X,Y ∈ T

and δ ∈ R (Dechter, Meiri, and Pearl 1991). Each STN
(T , C) has a corresponding graph G = (T , E), where the
TPs in T serve as the graph’s nodes, and the constraints
in C correspond to labeled, directed edges in E . In partic-
ular: E = {X δ Y | (Y −X ≤ δ) ∈ C}. For convenience,
an edge X δ Y may be notated as (X, δ, Y).

An STN is consistent if it has a solution as a constraint
satisfaction problem. Although solutions for consistent STNs
can be computed in advance of execution (e.g., by the
Bellman-Ford algorithm (Cormen et al. 2022)), it is often
desirable to preserve as much flexibility as possible during
execution (e.g., to enable reacting to unanticipated events).
Toward that end, Tsamardinos, Muscettola, and Morris (1998)
first specified a real-time execution algorithm for STNs,
called the Time Dispatching (TD) algorithm, and then de-
fined an STN to be dispatchable if every run of the TD
algorithm was guaranteed to generate a solution. The TD
algorithm provides maximum flexibility during execution
by maintaining time windows for each timepoint. It requires
minimal computation during execution by propagating the
effects of each real-time execution, X = v, only locally (i.e.,
to X’s neighbors; that is, timepoints connected to X by a sin-
gle edge). Morris (2016) subsequently provided a graphical
characterization of STN dispatchability in terms of vee-paths.

Definition 2. A vee-path is a path consisting of zero or more
negative edges followed by zero or more non-negative edges.
If P is a vee-path from X to Y that is also a shortest path
from X to Y , then P is called a shortest vee-path (SVP).

Theorem 1. An STN is dispatchable if and only if whenever
there is a path from any X to any Y , there is an SVP from X
to Y (Morris 2016).

A Simple Temporal Network with Uncertainty (STNU)
augments an STN to include actions with uncertain durations.

Definition 3 (STNU). An STNU is a triple, S = (T , C,L),
where (T , C) is an STN, and L is a set of contingent links
(CLs), each of the form (A, x, y, C), where A,C ∈ T and
0 < x < y < ∞ (Morris, Muscettola, and Vidal 2001).

Once the activation timepoint A is executed (i.e., assigned
a value during execution), the contingent timepoint C is guar-
anteed to execute such that C −A ∈ [x, y], but the particular
time chosen for C is not controlled by the agent executing
the network; it is only observed in real-time.

With no loss of generality, we assume that no contingent
TP can serve as the activation TP for another contingent link.

Each STNU S = (T , C,L) has a corresponding graph,
G = (T , Eo ∪ Elc ∪ Euc), where (T , Eo) is the graph for
the STN (T , C), and Elc and Euc contain labeled, directed
edges derived from the contingent links in L. In particular:
Elc = {A c:x C | (A, x, y, C) ∈ L}, and Euc = {C C:−y A |
(A, x, y, C) ∈ L}. The lower-case (LC) edge A c:x C repre-
sents the uncontrollable possibility that the duration C −A
might take on its minimum value x, while the upper-case
(UC) edge C C:−y A represents the uncontrollable possibil-
ity that C − A might take on its maximum value y. These
labeled edges may be respectively notated as (A, c:x,C) and
(C,C:−y,A). In contrast, the constraints in C and edges in

Eo may be called ordinary constraints and edges, respectively,
to distinguish them from the labeled LC and UC edges. For
convenience, we frequently blur the distinction between an
STNU and its graph, and between edges and constraints.
Definition 4. An STNU S = (T , C,L) is dynamically con-
trollable (DC) if there exists a dynamic strategy for executing
its timepoints such that all constraints in C are guaranteed
to be satisfied no matter how the durations of the CLs in L
turn out (Morris, Muscettola, and Vidal 2001). The strategy
is dynamic in that its execution decisions cannot depend on
advance knowledge of future contingent executions.

Several polynomial-time DC-checking algorithms have
been presented in the literature (Morris 2006, 2014; Cairo,
Hunsberger, and Rizzi 2018; Hunsberger and Posenato 2022).
However, in positive instances, such algorithms only confirm
the existence of a dynamic execution strategy; they do not
output one. Since such strategies typically require exponential
space, Morris (2016) extended the concept of dispatchability
from STNs to extended STNUs (ESTNUs), as follows.

First, we must backtrack. Some DC-checking algorithms
for STNUs generate a new kind of conditional constraint
called a wait (Morris 2006). A typical wait can be glossed
as “If the contingent timepoint C has not yet executed, then
V must wait until at least w after the activation timepoint
A.” Its graphical representation is the generated UC edge,
V C:−v A, where A and C are the activation and contingent
timepoints for some CL (A, x, y, C). Intuitively, since the
execution of C cannot be directly controlled and might occur
as late as y after A, V must wait until v after A; but if C
executes earlier than v after A, then the wait is automatically
satisfied, and V may be executed immediately.

Generating wait edges is not required to determine the DC
property (e.g., as seen in the algorithms of Morris (2014)
and Cairo, Hunsberger, and Rizzi (2018)), but waits turn out
to be necessary for enforcing the dispatchability of STNUs.
Anticipating this, Morris (2016) defined extended STNUs
and the dispatchability of ESTNUs, as follows.
Definition 5. An extended STNU (ESTNU) is an STNU
augmented to include zero or more waits (equivalently, an
STNU graph together with a set Eucg of generated UC edges).
Definition 6 (Situation). Let S be an ESTNU with k contin-
gent links whose duration ranges are [x1, y1], . . . , [xk, yk].
A situation for S is a k-tuple ω = (ω1, ω2, . . . , ωk) where
ωi ∈ [xi, yi] for each i ∈ {1, 2, . . . , k}. The space of all situ-
ations is denoted by Ω = [x1, y1]× · · ·× [xk, yk]. If C is the
contingent timepoint for a link (A, x, y, C), then the duration
C −A in the situation ω may alternatively be notated as ωc.

A situation not only specifies the duration of each contin-
gent link, it also determines the impact of each wait. This
information is captured by the projection of the ESTNU.
Definition 7. For an ESTNU graph G = (T , Eo∪Elc∪Euc∪
Eucg), and a situation ω, the projection of G onto ω is the
STN graph Gω = (T , Eo ∪ Eω

lc ∪ Eω
uc ∪ Eω

ucg), where:

Eω
lc = {(Ai, ωi, Ci) | ∃(Ai, ci:xi, Ci) ∈ Elc}

Eω
uc = {(Ci,−ωi, Ai) | ∃(Ci, Ci:−yi, Ai) ∈ Euc}

Eω
ucg = {(V, δi, Ai) | ∃(V,Ci:− v,Ai) ∈ Eucg}

(δi abbreviates max{−ωi,−v})

The edges in Eω
lc and Eω

uc fix each duration Ci −Ai = ωi. The
edges in Eω

ucg reflect the effective constraints imposed by the
waits in Eucg in the situation ω. For example, if ωi = 3, then
the wait (V,Ci:−7, Ai) projects onto (V,−3, Ai), reflecting
that the wait vanishes when Ci executes at Ai + 3. (Note:
max{−3,−7} = −3.) But if ωi = 8, then the wait projects
onto (V,−7, Ai), reflecting that V must wait the full 7 units,
since Ci did not execute early. (Note: max{−8,−7} = −7.)
Definition 8 (Path length). The length of a path P in a pro-
jection Gω is notated as |P|ω. For any V and W , dω(V,W)
denotes the length of the shortest path from V to W in Gω;
and d∗(V,W) = maxω{dω(V,W)} denotes the maximum
such length across all projections. If P has only ordinary
edges, then |P| denotes its length; and d(V,W) denotes the
length of the shortest path from V to W that has only ordi-
nary edges. If context allows, we may notate a path by listing
its timepoints. For example, a path from V to A to C may be
notated as VAC , and its length as |VAC |ω .

Following Morris (2014), Hunsberger and Posenato (2024)
defined a real-time execution algorithm RTE∗ for ESTNUs
that, like the TD algorithm for STNs, provides maximum
flexibility but requires minimal computation. They then de-
fined an ESTNU S to be dispatchable if every execution of
the RTE∗ algorithm is guaranteed to satisfy the constraints
in S . Next, they proved the following claim due to Morris.
Theorem 2. An ESTNU is dispatchable if and only if all of
its STN projections are dispatchable (as STNs).

This theorem is invaluable in proving the correctness of
algorithms related to ESTNU dispatchability since, together
with Theorem 1, it connects ESTNU dispatchability to the
existence of shortest vee-paths in STN projections.

Most DC-checking algorithms do not output a dispatch-
able ESTNU. However, as Morris (2014) noted, his O(n3)-
time DC-checking algorithm can be modified to generate
waits and, in doing so, guarantee an equivalent dispatchable
output. More recently, Hunsberger and Posenato (2023) pre-
sented a faster algorithm for generating equivalent dispatch-
able ESTNUs. However, neither algorithm makes any claim
about the number of edges in the dispatchable output. Since
that number impacts the performance of the real-time execu-
tion algorithm, producing an equivalent dispatchable ESTNU
with a minimal number of edges is of practical importance.
Definition 9. Given an ESTNU graph G, if G′ is an equivalent
dispatchable ESTNU having a minimal number of edges, then
G′ is called a µESTNU for G.

This paper presents the first algorithm for computing
µESTNUs. It runs in O(kn3) worst-case time.

Preliminary Observations
This section introduces ESTNU structures that play important
roles in computing µESTNUs. It also previews cases of wait
edges that can be removed while preserving dispatchability.

As noted earlier, an ESTNU is dispatchable if and only if
all of its STN projections are dispatchable—as STNs. This
implies that if there is a path from some V to some W in
an ESTNU, then in each projection, there must be a shortest
vee-path from V to W . However, the shortest vee-paths in

A C

Y

W

weak: C:−2fixed: −2

misleading: C:−15

fixed: C:−10

c:3

C:−10

(a) Weak and misleading waits

A CX C:−6

c:3

C:−10

−3 10

−3

(b) (Dashed) stand-in edges

Figure 1: Managing labeled ESTNU edges

V

C A

W

C
:−
6

c:1

C:−10
8

13

V

C A

W

−2

2

−2

8

13

V

C A

W

−6

9

−9

8

13

V

C A

W

C
:−
6

c:1

C:−10
8

13

8

4

(a) ESTNU (b) ωc = 2 (c) ωc = 9 (d) stand-ins

Figure 2: A sample ESTNU, two of its projections with (col-
ored) shortest vee-paths, and two (dashed) stand-in edges

different projections need not follow the same routes from V
to W . As a result, a combination of shortest vee-paths across
different projections may entail an (implicit) ordinary edge
from V to W that is stronger than any pre-existing edge. Our
new algorithm begins by generating what we call stand-in
edges—that is, ordinary edges that explicitly represent im-
plicit constraints entailed by combinations of ESTNU edges
across different STN projections. The stand-in edges can be
used to determine what other edges can be removed from the
network without threatening its dispatchability. After playing
this role, the stand-in edges are eventually removed—because
other ESTNU paths or edges entail them. Before considering
stand-in edges, we must fix any weak or misleading waits.

Fixing “weak” and “misleading” waits. In Figure 1a,
(Y,C:−2, A) is a weak wait, since C cannot execute before
the wait time of 2 expires. So this wait is effectively uncondi-
tional and hence is replaced by the ordinary edge (Y,−2, A),
as per the Unconditional Unordered Reduction rule of Mor-
ris, Muscettola, and Vidal (2001). In contrast, (W,C:−15, A)
is a misleading wait since C must execute no later than 10
after A. This wait is fixed by changing the wait time to the
maximum of 10: (W,C:−10, A).

Stand-in edges for LC, UC, and wait edges. Figure 1b
shows (dashed) stand-in edges that represent the strongest or-
dinary constraints that are entailed by labeled ESTNU edges
associated with the contingent link (A, 3, 10, C). The stand-
in edge for the LC edge (A, c:3, C) is (A, 10, C), represent-
ing that C −A ≤ 10 in every projection. The stand-in edge
for the UC edge (A,C:−10, C) is (C,−3, A), representing
that A− C ≤ −3 (i.e., C −A ≥ 3) in every projection. For
the wait edge (X,C:−6, A), the stand-in edge is (X,−3, A),
representing that X must unconditionally wait at least 3 after
A, since C cannot execute sooner than that.

Stand-in edges for diamond structures. Consider the
ESTNU in Figure 2a. Since it has only one contingent link,
each projection is determined by the value ωc that it as-
signs to C − A. In the projection where ωc = 2, shown
in Figure 2b, the shortest vee-path from V to W , indi-

A2

C A

W

V2

C2

c:1

C:−10

c2:1

C2:−10

138

C
:−
6 9

2

C2
:−
6

3

2

8

V

AC

W

X

Y

C
:−
6

c:1

C:−10
8

13

12

−2

3

8

Figure 3: Stand-in edges entailed by nested diamonds (left);
using a stand-in edge to dominate the edge (X, 12, Y) (right)

cated by thick blue edges, has length 8, whereas in the
projection shown in Figure 2c, where ωc = 9, the short-
est vee-path from V to W , indicated by thick orange edges,
has length 7. It is not hard to check that for this ESTNU,
the length of the shortest vee-path from V to W is at
most 8 in every projection. For example, in projections
where ωc ≤ 5, |VACW |ω = max{−ωc,−6}+ ωc + 8
= max{8, ωc + 2} ≤ 8. But in projections where ωc ≥ 5,
|VAW |ω = max{−ωc,−6}+ 13 = max{13− ωc, 7} ≤ 8.
Hence, this combination of ordinary and labeled edges entails
the (green, dashed) stand-in edge (V, 8,W) in Figure 2d.

The VAC rule. The edges in Figure 2a also entail the stand-
in edge (V, 4, C), shown as purple and dashed in Figure 2d,
since in each projection, |VAC |ω = max{−6,−ωc}+ ωc

= max{ωc − 6, 0} ≤ 4, since ωc ≤ 10.
Stand-in edges for nested diamonds. The left of Fig-

ure 3 shows a more complicated ESTNU, where the dia-
mond structure involving the solid green edges is nested
inside the diamond structure involving the solid purple
edges. Ignoring the green edges, for now, the solid pur-
ple edges can be shown to entail the (purple, dashed)
stand-in edge (V2, 3,W). In particular, in projections where
ω2 = C2 − A2 ≤ 7, the length of the path V2A2C2W is:
max{−ω2,−6}+ ω2 + 2 = max{2, ω2 − 4} ≤ 3. In con-
trast, if ω2 ≥ 7, the length of the alternative path V2A2W is:
max{−ω2,−6}+ 9 = max{9− ω2, 3} ≤ 3.

Next, since the green diamond is isomorphic to the dia-
mond from Figure 2a, it entails the (green, dashed) stand-in
edge (A2, 8,W). But now, using that stand-in edge instead
of the purple edge (A2, 9,W), a new analysis of the purple
structure shows that it now entails a stronger (blue, dashed)
stand-in edge (V2, 2,W). In other words, nested diamond
structures can sometimes combine to entail stronger stand-in
edges. Not only that, the order in which nested diamonds are
analyzed can affect the overall computational effort required.

The importance of stand-in edges. The network in the
right of Figure 3 includes the diamond structure from Fig-
ure 2a (with its labeled edges drawn in gray), its (dashed)
stand-in edge (V, 8,W), and some additional edges. Assum-
ing that the stand-in edge is present in the network, then the
vee-path XVWY , which contains only ordinary edges, has
length −2 + 8 + 3 = 9, which is less than the length of the
edge (X, 12, Y). That implies that the edge (X, 12, Y) can
be removed from the network without affecting its dispatch-
ability. Had the pre-existing edge been (X, 9, Y), it could
still be removed, given the alternative vee-path. Crucially,

V C AC:−yδ

C:δ − y

(a) Upper-Case Rule

A C A2c:x C2:−v

C2:x − v

(b) Cross-Case Rule

Figure 4: Rules for generating wait edges

V

U C

A

−
2

4

C
:−

1
0

C:−
6

C:−8

(a) Dominated by
another wait

V

U C

A

−
3

−2

c
:1

C
:−

1
0

C:−15

C:−
12

(b) Dominated by a
UC edge

V

W X

A

−
8

1

2

C:−5

(c) Dominated by an
ordinary path

Figure 5: Eamples of (blue) wait edges that can be removed
without threatening ESTNU dispatcability

this conclusion depended solely on ordinary edges. Once the
edge (X, 12, Y) has been removed, the stand-in edge has
played its role and can be discarded, leaving behind the SVPs
XVAWY and XVACWY from X to Y .

Removing unneeded wait edges. Computing a µESTNU
also requires removing three cases of wait edges that are not
needed for dispatchability: wait edges that are dominated by
(1) other wait edges, (2) UC edges; or (3) ordinary paths.

First, we review the rules of Morris and Muscettola (2005)
that are used to generate wait edges. The waits generated by
these rules must be satisfied by every valid execution strategy.

The Upper Case (UC) rule in Figure 4a combines an ordi-
nary edge (V, δ, C) and a UC edge (C,C:−y,A) to generate
a (dotted) wait edge (V,C:δ−y,A). Intuitively, since C−A
might be as big as y, if we want C − V ≤ δ, then V must
wait (y − δ) after A (unless C happens to execute early).

Similarly, the Cross Case (CC) rule in Figure 4b combines
the LC edge (A, c:x,C) for one contingent link with a wait
edge (C,C2:−v,A2) labeled by a different contingent time-
point C2 to generate a (dotted) wait edge (C,C2:x− v,A2).
Intuitively, since C might be as little as x after A, but C must
wait at least v after A2 (unless C2 executes early), then A
must wait at least (v−x) after A2 (unless C2 executes early).

Waits dominated by other waits. Figure 5a shows an
ESTNU having a (blue) wait edge (V,C:−8, A) that is dom-
inated by another wait edge (U,C:−6, A). The key fea-
ture is that the path from V to U (in this case, a single
edge) has a negative length. As a result, in any situation ωc,
|VUA|ωc

= −2 + max{−6,−ωc} = max{−8,−2 − ωc}
≤ max{−8,−ωc} = |(V,C:−8, A)|ωc

.
Waits dominated by UC edges. In Figure 5b, two (blue)

wait edges, (V,C:−15, A) and (U,C:−12, A), are domi-
nated by the UC edge (C,C:−10, A) via the paths, VUCA
and UCA, respectively. For each ωc ∈ [1, 10]: |VUCA|ωc =
−5 + |(C:−10, A)|ωc

= −5− ωc ≤ max{−15,−ωc} =
|(V,C:−15, A)|ωc

. Crucially, d(V,C) = −5 < 0.
Waits dominated by ordinary paths. In Figure 5c,

the (blue) wait (V,C:−5, A) is dominated by the ordinary
path VWXA, since for each ωc, |VWXA|ωc

= −5 ≤
max{−5,−ωc} = |(V,C:−5, A)|ωc

.

Algorithm 1: minDispESTNU

Input: G = (T , Eo ∪ Elc ∪ Euc ∪ Eucg), dispatchable ESTNU
Output: A µESTNU for G

1 (Esi
o , d) ··= genStandIns(T , Eo ∪ Elc ∪ Euc ∪ Eucg)

// STN dispatchability on ord. edges, reorienting labeled edges
2 (T , E∗

o , Êlc, Êuc, Êucg) ··= dispstn(T , Eo ∪ Esi
o , Elc, Euc, Eucg)

3 Ê∗
o ··= E∗

o \Esi
o // Remove any remaining stand-in edges from E∗

o

4 Êucg ··= Êucg\markWaits(Tc, Êucg, d)// Remove domin. waits
5 return G = (T , Ê∗

o ∪ Êlc ∪ Êuc ∪ Êucg)

The minDispESTNU Algorithm
This section introduces our new minDispESTNU algorithm. It
takes a dispatchable ESTNU G = (T , Eo, Elc, Euc, Eucg) as
input, and generates as output a µESTNU (i.e., an equivalent
dispatchable ESTNU with a minimal number of edges). Since
the input is dispatchable, the algorithm must only determine
which edges can be removed while preserving dispatchability.

The algorithm has four steps. First, it computes Esi
o , the set

of stand-in edges entailed by combinations of ESTNU edges.
These stand-in edges only play a supporting role and, hence,
are removed before the end of the algorithm. Second, it uses
the STN-based dispatchability algorithm from Tsamardinos,
Muscettola, and Morris (1998) to transform the STN (T , Eo∪
Esi
o) into an equivalent dispatchable STN (T , E∗

o) with a
minimal number of edges (for the STN). Third, if any stand-
in edges remain in E∗

o , it removes them. Fourth, it removes
from Eucg all wait edges that are dominated by (1) ordinary
paths; (2) UC edges; or (3) other waits, resulting in a set Êucg.
Finally, minDispESTNU outputs the µESTNU determined by the
ordinary edges in Ê∗

o and the waits in Êucg.
Algorithm pseudocode. Algorithm 1 shows the pseudo-

code for minDispESTNU. At Line 1, it calls genStandIns (Algo-
rithm 2), which computes the set Esi

o of all stand-in edges. The
edges in Eo∪Esi

o encode the strongest ordinary constraints en-
tailed by the input ESTNU. genStandIns also fixes all “weak”
or “misleading” wait edges (Lines 5-9), and computes the
distance function d for the STN (T , Eo ∪ Esi

o).
At Line 2, minDispESTNU applies the STN dispatchability

algorithm dispstn to the STN (T , Eo ∪ Esi
o) to compute an

equivalent, dispatchable STN (T , E∗
o), typically by inserting

some new ordinary edges and deleting others. The dispstn
algorithm identifies any rigid components in the input STN
and then reorients its edges to make them incident only to
the representative timepoints of those rigid components.1 So
we modified dispstn to similarly reorient the labeled edges
from the ESTNU. That is why dispstn takes the labeled edge
sets, Elc, Euc and Eucg, as extra inputs and returns the corre-
sponding sets of reoriented edges, Êlc, Êuc and Êucg, as extra
outputs. (The labeled edges are only reoriented; none are lost
or added in the process.) After applying dispstn , the stand-in
edges in Esi

o have served their purpose and, therefore, any
stand-ins happening to remain in E∗

o are removed (Line 3).
Finally, at Line 4, minDispESTNU calls the markWaits func-

1A rigid component is a set of timepoints whose values relative
to one another are constrained to be fixed.

Algorithm 2: genStandIns
Input: (Tx ∪ Tc, Eo ∪ Elc ∪ Euc ∪ Eucg), dispatchable ESTNU
Output: (Esi

o , d), Esi
o = set of stand-in ord. edges, and d =

distance function for Eo ∪ Esi
o .

1 L ··= the contingent links associated with G; Esi
o ··= ∅

2 foreach (A, x, y, C) ∈ L do
// Collect stand-in edges for LC and UC edges

3 Esi
o ··= Esi

o ∪ {(A, y, C), (C,−x,A)}
4 foreach (V,C:−v,A) ∈ Eucg do
5 if −v ≥ −x then // Replace weak wait by ord edge
6 Eucg ··= Eucg\{(V,C:−v,A)}
7 Eo ··= Eo ∪ {(V,−v,A)}
8 else if −v < −y then // Adjust misleading wait
9 Eucg ··= Eucg\{(V,C:−v,A)} ∪ {V,C:−y,A)}

// Collect stand-in edge for wait edge
10 if −v < −x then Esi

o ··= Esi
o ∪ {(V,−x,A)}

11 for i ··= 1 to k do // k = max depth of nested diamond struct.
12 d ··= Johnson(T , Eo ∪ Esi

o)// Shortest ord path lengths
13 edgeAdded ··= ⊥
14 foreach (A, x, y, C) ∈ L do
15 foreach (V,C:−q,A) ∈ Eucg do
16 if y − v ≤ d(V,C) then // Apply the VAC rule
17 Esi

o ··= Esi
o ∪ {(V, y − v, C)}

18 edgeAdded ··= ⊤
19 foreach W ∈ T \{A,C, V } do

// Explore VACW “diamond” structures
20 γ ··= d(C,W); δ ··= d(A,W)
21 if γ < ∞ and δ < ∞ then
22 ω̂ ··= δ − γ
23 if x < ω̂ < y then
24 θ ··= max{−ω̂,−q}+ δ
25 if θ ≤ d(V,W) then // stand-in edge!
26 Esi

o ··= Esi
o ∪ {(V, θ,W)}

27 edgeAdded ··= ⊤

28 if edgeAdded == ⊥ then break // Exit from the for

29 if edgeAdded then d ··= Johnson(T , Eo ∪ Esi
o) // Update d

30 return (Esi
o , d) // At this point, d = d∗

tion (Algorithm 3) that collects the wait edges that are not
needed for dispatchability and hence can be removed from
the ESTNU. The µESTNU is output at Line 5.

The next section covers genStandIns and markWaits in
detail and proves important properties of Algorithms 1-3.

Formal Analysis
At Lines 5-9, genStandIns replaces any “weak waits” with
ordinary edges and adjusts the wait times of any “misleading
waits”. At Lines 3 and 10, it collects stand-in edges entailed
by the LC, UC, and (fixed) wait edges from the input ESTNU.
Lemma 1. Each weak wait is equivalent to its ordinary
replacement. Each misleading wait is equivalent to its fixed
version. For each labeled edge e (fixed if needed), its stand-in
edge ê satisfies maxω{|e|ω} = |ê|. Hence, ê is entailed by e.

Proof. For the contingent link (A, x, y, C), ωc ∈ [x, y]. For

Algorithm 3: markWaits

Input: Tc, contingent TPs; Êucg, wait edges; d, distance fn.
Output: A set Em

ucg ⊆ Êucg of wait edges marked for removal
1 Em

ucg ··= ∅
// Collect waits dominated by ord paths,UC edges,or other waits

2 foreach (V,C:−v,A) ∈ Êucg do
3 if d(V,A) ≤ −v or d(V,C) < 0 then
4 Em

ucg ··= Em
ucg ∪ {(V,C:−v,A)}

5 else
6 foreach U ∈ T | ∃(U,C:−u,A) ∈ Êucg do
7 if d(V,U) < 0 and d(V,U)− u ≤ −v then
8 Em

ucg ··= Em
ucg ∪ {(V,C:−v,A)}

9 return Em
ucg

a weak wait, G = (V,C:−v,A), −v ≥ −x. Hence, |G|ωc
=

max{−v,−ωc} = −v = |(V,−v,A)|. For a misleading
wait, H = (W,C:−v,A), −v < −y. Hence, |H|ωc

=
max{−v,−ωc} ≤ max{−y,−ωc} = |(V,C:−y,A)|ωc

.
The stand-in for e = (A, c:x,C) is ê = (A, y, C). Hence,
d∗(A,C) ≤ maxωc{|e|ωc} = maxωc{ωc} = y = |ê|. The
stand-in for E = (C,C:−y,A) is Ê = (C,−x,A). Hence,
d∗(C,A) ≤ maxωc

{|E|ωc
} = maxωc

{−ωc} = −x = |Ê|.
The stand-in for a (fixed) wait, F = (V,C:−v,A) is
F̂ = (V,−x,A). Hence, d∗(V,A) ≤ maxωc

{|F |ωc
} =

maxωc{max{−v,−ωc}} = −x = |F̂ |ωc .

Henceforth, this section assumes that G includes these initial
stand-in edges and that all waits are fixed. It also restricts at-
tention to simple paths (i.e., paths with no subsidiary cycles).

Next, the main loop of genStandIns (Lines 11-28) does
at most k iterations, aiming to generate: (1) the stand-in
edges derived from all possible applications of the VAC rule
(Lines 16-18; recall the dashed purple stand-in edge from
Figure 2d); and (2) the stand-in edges entailed by all possible
VACW “diamond” structures (Lines 20-27; recall the dashed
green stand-in edge from Figure 2d). Theorems 3 and 4,
and Corollary 1, below, ensure that genStandIns correctly
generates all stand-in edges and computes all d∗ values.
Definition 10 (Needed). A contingent link (A, x, y, C) is
needed for d∗(U,W) in an ESTNU G if removing all of the
labeled edges associated with that contingent link from G
would change the value of d∗(U,W).
Note that if no contingent links are needed for d∗(U,W),
then its value is determined solely by ordinary edges.
Lemma 2. Suppose that (A, x, y, C) is the only contingent
link needed for d∗(U,W). Then the LC edge (A, c:x,C) and
some wait edge (V,C:−v,A) are both needed for d∗(U,W).

Proof. Since only one contingent link is needed, the shortest
vee-paths relevant to d∗(U,W) in any projection derive from
ESTNU paths involving zero or more ordinary edges and
at least one edge labeled by c or C. Therefore, regarding
situations, it suffices to restrict attention to the value of ωc =
C − A. The result follows from showing that each of the
following cases generates a contradiction.

W

C A

U
α β

c:x

C:−y
γ δ W

C A

U
α β

ωc

−ωc

γ δ

Figure 6: The diamond considered in Case 3 of Lemma 2

W

C A

V
U

βC:−vα
σ

c:x

C:−y

γ δ W

C A

V
U

βmax{−ωc,−v}α
σ

ωc

−ωc

γ δ

W

C A

U
V −7max{−ωc,−6}−3

−5

ωc

−ωc

8 13

f
1 (ω

c)

f2(
ωc)

f3(
ωc)

f
4 (ω(c)

f(ωc)

1 2 5 6 8

1

3

9

ωc

f1(ωc) = |UVAW |ω =σ +max{−v,−ωc}+ δ
f2(ωc) = |UACW |ω =β + ωc + γ
f3(ωc) = |UVACW |ω =σ +max{−v,−ωc}+ ωc + γ
f4(ωc) = |UCAW |ω =α− ωc + δ
f(ωc) = min{fi(ωc)}

Figure 7: ESTNU paths and their projections (cf. Theorem 3)

Case 1: The LC edge e = (A, c:x,C) is the only needed
edge. Let P be an ESTNU path from U to W such that
|P|y ≤ d∗(U,W). (|P|y notates the length of P’s projection
in the situation where ωc = y.) Next, let Psi be the ordinary
path that is the same as P except that e has been replaced
by its stand-in edge (A, y, C). Then for any ω, we have that
|Psi| = |P|y ≤ d∗(U,W), contradicting the need for e.

Case 2: The LC edge e = (A, c:x,C) is not needed. Let P
be any ESTNU path from U to W , not containing e, such that
|P|x ≤ d∗(U,W). Next, let Psi be the ordinary path that is
the same as P except that the UC edge and any wait edges
have been replaced by their stand-in edges. Then |Psi| =
|P|x ≤ d∗(U,W), contradicting the need for labeled edges.

Case 3: The only needed edges are the LC edge (A, c:x,C)
and UC edge (C,C:−y,A). Then, each SVP derives from
paths in Figure 6 (the arrows may denote ordinary paths);
|UACW |ωc

= β + ωc + γ (increasing with ωc); and
|UCAW |ωc

= α− ωc + δ (decreasing with ωc). Since
the LC and UC edges are both needed, we must have:
|UCW | > d∗(U,W) and |UAW | > d∗(U,W); and the
SVPs must be UACW for smaller values of ωc; and UCAW
for larger values. The maximum shortest path length occurs
when |UCAW |ωc = |UACW |ωc , which occurs when ωc =
1
2 (α+ δ − β − γ). But that max value is (α+γ)+(β+δ)

2 =
|UCW |+|UAW |

2 > d∗(U,W), a contradiction.

Theorem 3. Suppose that (A, x, y, C) is the only contin-
gent link needed for d∗(U,W). Then, d∗(U,W) equals
min{d(U, V) + d∗(V,W) | ∃(V,C:− v,A) ∈ Eucg}.

Proof. By Lemma 2, the edges needed for d∗(U,W) include
the LC edge (A, x, y, C) and some wait edge (V,C:−v,A).

As in the proof of Lemma 2, we refer to situations by the value
of ωc = C−A. As illustrated in Figure 7, where the arrows la-
beled by Greek letters represent shortest ordinary paths, each
shortest vee-path from U to W in any Gωc

must, by construc-
tion, be one of the four paths, UVAW ,UACW ,UVACW
or UCAW , whose lengths are functions of ωc, as shown at
the bottom of the figure. These length functions are plotted
for the sample instance in the lower right of the figure. In
addition, since the LC and wait edges are needed, we must
have: d∗(U,W) < |UCW | and d∗(U,W) < |UAW |.

Each of the length functions is continuous, piecewise-
linear and monotone (i.e., non-decreasing or non-increasing).
Thus, the minimum of the length functions, f(ωc) =
min1≤i≤4{fi(ωc)} (blue and dashed in Figure 7) must be
continuous and piecewise linear. So the maximum value of
f(ωc) (i.e., d∗(U,W)) must occur at an endpoint of one of
the piecewise-linear segments (i.e., where two of the length
functions intersect). If I is the set of values of ωc at all points
of intersection, then d∗(U,W) = max{f(ωc) | ωc ∈ I}. In
the sample plot, d∗(U,W) = 3.

Let τij denote the value of ωc where fi(ωc) = fj(ωc).
For example, τ13 denotes the value of ωc at which f1(ωc) =
f3(ωc) (i.e., where |UVAW |ωc = |UVACW |ωc). Intersec-
tion points that depend on the projected length of the wait
edge (i.e., max{−v,−ωc}) are given the superscript v (for
the case where −v ≥ −ωc) or ω (for −ωc ≥ −v). It is easy
but tedious to compute all possible points of intersection:

τv12 = σ + δ − v − β − γ τω12 =
σ+δ−β−γ

2

τ13 = δ − γ τv14 = α− σ + v

τω23 = σ − β τ24 =
α+δ−β−γ

2

τv34 =
α+δ−σ+v−γ

2 τω34 = α+ δ − σ − γ

Claim: For each τ ∈ I, f(τ) = min{f1(τ), f3(τ)} =
min{|UVAW |ωc , |UVACW |ωc}. In other words, the two
paths UVAW and UVACW suffice to determine d∗(U,W),
which requires computing only their single point of in-
tersection: τ13 = δ − γ. At that point, |UVAW |ωc

=
|UVACW |ωc

= σ + max{δ − v, γ}. In the sample plot,
δ − γ = 13− 8 = 5 and d∗(U,W) = −5 +max{7, 8} = 3.

Proof of claim. For lack of space, we only show the proof
for τv12 (i.e., where f1 = f2 and −v ≥ −ωc). If the minimum
is f1(τ

v
12) = f2(τ

v
12) or f3(τ

v
12), then the claim holds. It

only remains to show that the min is not f4(τw12) =
α−σ
2 +

α+γ+δ+β
2 . Now (α − σ) ≥ 0, since otherwise |UCA|ωc

=
α − ωc < σ − ωc ≤ σ + max{−ωc,−v} = |UVA|ωc

,
contradicting the need for the wait edge. Hence, f4(τw12) ≥
(α+γ)+(δ+β)

2 = |UCW |+|UAW |
2 > d∗(U,W).

Finally, note that d∗(V,W) < max{δ− v, γ} would yield
a contradiction since it would entail the existence of alter-
native shorter pathways from U to V to W in every pro-
jection. Therefore, d∗(V,W) = max{δ − v, γ}; and, as-
suming (V,C:−v,A) is the needed wait edge, d∗(U,W) =
σ + d∗(V,W) = d(U, V) + d∗(V,W).

So far, the proof assumed that W ̸∈ {A,C}. However,
(A, x, y, C) cannot be needed for d∗(V,A) since the LC edge
cannot be in any simple SVP ending in A. And the only
way (A, x, y, C) can be needed for any d∗(V,C) is if the

SVP is the concatenation of (V,C:−v,A) and the LC edge,
which yields the stand-in edge generated by the VAC rule:
|VAC |ωc

= max{−v,−ωc} + ωc = max{ωc − v, 0} =
y − v.

Definition 11. For any U and W , let ∥(U,W)∥ denote the
minimum number of contingent links needed for d∗(U,W).

Theorem 4. For any U and W , if ∥(U,W)∥ = h > 0, then
d∗(U,W) = min{d(U, V) + d∗(V,W) | ∃(V,C:− v,A) ∈
Eucg and ∥(A,W)∥ < h}.

Proof. The case h = 1 is given by Theorem 3. For the re-
cursive case, suppose h > 1. Among the set L∗ of contin-
gent links (CLs) whose edges are needed for d∗(U,W), let
(A, x, y, C) be one whose activation timepoint (ATP) is not
constrained to occur before the ATP for any other CL in L∗;
and let (V,C:−v,A) be any wait edge needed for d∗(U,W).

By the definition of vee-path, since LC edges are non-
negative, no LC edge can precede either the UC edge
(C,C:−y,A) or the wait edge (V,C:−v,A) in any SVP;
nor, by the choice of (A, x, y, C), can any UC or wait edge
from CLs in L∗ precede (C,C:−y,A) or (V,C:−v,A). In
addition, since UC and wait edges are negative, no UC or
wait edge can follow the LC edge (A, c:x,C) in any SVP.
Therefore, by Lemma 2, no CLs from L∗ can be needed for
the paths, UC ,UV or CW , shown in Figure 7; so without
loss of generality, they can be assumed to be ordinary paths.
In contrast, the path AW may use labeled edges from CLs
in L∗. (Recall the nested diamonds in Figure 3.) In addition,
since ∥(U,W)∥ = h, it follows that ∥(A,W)∥ < h.

Let ωp denote a partial situation that specifies durations
for all contingent links except (A, x, y, C). Choose ωp such
that |AW |ωp = d∗(A,W). Then for any ωc ∈ [x, y],
let ωp

c be the (full) situation that extends ωp to include
C − A = ωc. So, across all such situations ωp

c , the path
lengths, γ = |CW | and δ = |AW |ωp = d∗(A,W), are
fixed. Hence, by Theorem 3, for any wait edge (V,C:−v,A),
we get that maxωc

{dωp
c
(V,W)} = max{δ − v, γ}. Fur-

thermore, since for any ω, |AW |ω ≤ d∗(A,W), it fol-
lows that |VAW |ω ≤ |VAW |ωp , implying that d∗(V,W) =
maxωc

{dωp
c
(V,W)} = max{δ−v, γ}. Since (A, x, y, C) is

needed for d∗(U,W), any SVP from U to W , in any situation
ω, must pass through some wait (V,C:−v,A), from which
the result follows.

Corollary 1. Algorithm 2 (genStandIns) correctly computes
d∗(U,W) for each pair of timepoints U and W (i.e., at the
end of the algorithm, d = d∗).

Proof. The genStandIns algorithm initially computes the
stand-in values entailed by all LC, UC, and wait edges. In a
DC network, there cannot be any further squeezing of LC or
UC edges. However, alternative paths may subsequently be
found that dominate wait edges.

If ∥(U,W)∥ = 0, then d∗(U,W) is obtained by the ini-
tial call to Johnson’s algorithm. Otherwise, by Theorem 4,
computing d∗(U,W) depends only on the value of d∗(V,W)
corresponding to some wait edge (V,C:−v,A). After the
first iteration of the main loop, genStandIns has correctly
computed the d∗(U,W) values for all U and W such that

Q R S X

T U

Y V
−7 1 1 7

edge e to be removed
1

−5 −3 15shortest vee-path

Q R S V

A B

W U−7 1 1

−6 −1 14
8

stand-in edge to be removed 1

shortest vee-path

Figure 8: Paths RE: Lemma 3 (top) and Theorem 5 (bottom)

∥(U,W)∥ = 1. Those values are incorporated as ordinary
stand-in edges for the next round. In general, after the ith

round, it has correctly computed the d∗(U,W) values for all
U and W such that ∥(U,W)∥ ≤ i. Since the labeled edges
from different contingent links can only be nested to a max-
imum depth of k (because each level of nesting involves a
precedence relation among the participating activation time-
points), at most k iterations of the algorithm are needed.

In addition to dispstn typically removing some ordinary
edges, markWaits collects different classes of wait edges to be
removed from the ESTNU. At Line 3, it collects waits dom-
inated by ordinary paths (see the condition, d(V,A) ≤ −v)
or UC edges (see the condition, d(V,C) < 0). Then, at Lines
6-8, it collects all waits dominated by other waits. Theorem 5,
below, ensures that removing these edges cannot threaten
the dispatchability of the ESTNU. But first, we present an
important result about STN dispatchability.

Lemma 3. Suppose that e = (X, δ, Y) is an (ordinary) edge
in a dispatchable STN Go, and Pe is a shortest vee-path from
X to Y in Go that does not use e. Then removing e from Go

preserves the dispatchability of Go.

Proof. Let P be any shortest vee-path (SVP) from some Q
to some V in Go that includes e. Let P ′ be the path obtained
from P by replacing e by Pe. Since Pe is an SVP, it follows
that |Pe| ≤ δ, and |P ′| ≤ |P|, which implies that P ′ is a
shortest path. Suppose, however, that P ′ is not a vee-path.

Case 1: Replacing e by Pe inserts a negative edge after a
non-negative edge. This scenario is illustrated in the top of
Figure 8, where e = (X, 7, Y), P is the path QRSXYV , Pe

is the path XTUY , and replacing e by Pe inserts the negative
edge XT after the non-negative edge SX . In this scenario,
δ = |e| must be non-negative since the edge e follows the non-
negative edge SX in a vee-path. In addition, U terminates
the last negative edge in Pe; hence, the subpath from X to U
is negative. However, since there is a path from R to U in Go,
the dispatchability of Go ensures that there is an SVP from R
to U , shown as dotted in the figure. Substituting this (dotted)
vee-path for the sub-path RSXTU in P ′, provides an SVP
from Q to V , despite the removal of e. (If e is used in any
shortest path P† from R to U , then the suffix of P† from X
to U must be negative, given that XTU is a shortest path with
|XTU | < 0. But then P† cannot be a vee-path.) The same
argument works in general where R is the last timepoint in
the subpath from Q to X that terminates a negative edge, and
U is the last timepoint in Pe that terminates a negative edge.

Case 2: Replacing e by Pe inserts a non-negative edge
before a negative edge. Handled similarly.

Theorem 5. Algorithm 1 (minDispESTNU) preserves the dis-
patchability of its input ESTNU.

Proof. The first step of minDispESTNU inserts the ordinary
edges collected by genStandIns (Algorithm 2). Since they are
entailed by the network, they cannot disturb dispatchability.
The second step runs the dispstn algorithm on the ordinary
edges, which can insert some edges while removing others.
With no loss of generality, suppose it first inserts all the new
edges and then removes edges. Let e = (X, δ, Y) be the first
edge whose removal thwarts the ESTNU’s dispatchability.
Since dispstn preserves dispatchability among the ordinary
edges, there must be an alternative shortest (ordinary) vee-
path Pe from X to Y with |Pe| ≤ |e|. But e might also be
used by an SVP P from some Q to some V in a projection Gω

such that replacing e by Pe creates a non-vee-path. Since Gω

is a dispatchable STN, Lemma 3 ensures the existence of an
SVP from Q to V in Gω that does not use e, a contradiction.

The third step of minDispESTNU is to remove any remain-
ing stand-in edges. The same kind of argument ensures that
their removal cannot thwart the ESTNU’s dispatchability.
For example, recall the stand-in edge (V, 8,W) derived from
the VACW diamond structure in Figure 2. In the projection
where ωc = 9 (cf. Figure 2c), the relevant SVP is VAW of
length 7. In any diamond structure, the path CW must be
non-negative since it follows the LC edge in an SVP. Hence,
the path AW must also be non-negative. (Otherwise, the
intersection point ωc = δ − γ could not lie within (x, y).)
However, the SVP from A to W might begin with a negative
edge, say (A,−1, B), as illustrated in the bottom of Figure 8.
(In general, B would be chosen as the terminus of the last
negative edge in the SVP from A to W .) As in Figure 8 and
Lemma 3, since there is a path from R to B in this projec-
tion, there must be an SVP from R to B, shown as dotted in
Figure 8, which ensures the existence of an SVP from Q to
U that does not use the stand-in edge (V, 8,W).

Finally, the fourth step of minDispESTNU removes three
classes of waits collected by markWaits (Algorithm 3,
Lines 3-8). Let e = (V,C:−v,A) be the first wait edge
whose removal thwarts the ESTNU’s dispatchability; and let
(A, x, y, C) be the corresponding contingent link.

Case 1: d∗(V,A) ≤ −v. Since genStandIns removed all
weak waits (Lines 5-7), it follows that −v < −x, where −x
is the length of this wait’s stand-in edge. So, prior to the
third step’s removal of the remaining stand-in edges, there
must have been an alternative ordinary (simple) path Pe

from V to A of some length δ ≤ −v ≤ max{−v,−ωc} =
|(V,C:−v,A)|ωc

, where some of Pe’s edges were stand-in
edges. However, since −v < −x, Pe cannot be just the stand-
in edge (V,−x,A). Now, in the third step, the stand-in edges
in Pe were, in effect, replaced by alternative SVPs but, as
shown above, Lemma 3 ensures that this preserves ESTNU
dispatchability, providing in each projection an alternative
SVP from V to A of length at most −v ≤ |(V,C:−v,A)|ωc .

Case 2: d∗(V,C) < 0. Prior to the third step’s removal
of stand-in edges, there must be an ordinary SVP P from V

to C. As argued above, removing all stand-in edges from P
cannot disturb the ESTNU dispatchability. Hence, in any
projection Gω, there must be an SVP Pω from V to C,
where |Pω|ω ≤ d∗(V,C) < 0. Let R be the terminus of
the last negative edge in Pω. Since there is a path from
R to A in Gω (using the suffix of Pω beginning at R to-
gether with the projected UC edge), there must be an SVP
Pra from R to A. Let Pvr be the prefix of Pω from V
to R; and let Pvra be the vee-path obtained by concate-
nating Pvr and Pra. Then |Pvra|ω = |Pvr|ω + |Pra|ω ≤
|Pω|ω + |(C,C:−y,A)|ωc < |(C,C:−y,A)|ω = −ωc ≤
max{−v,−ωc} = |(V,C:−v,A)|ωc , contradicting the need
for (V,C:−v,A). By Lemma 3, even if the projection of
(V,C:−v,A) were used in an SVP in some Gω, replacing it
by Pvra would not disturb the ESTNU’s dispatchability.

Case 3: There is a wait (U,C:−u,A) with d∗(V,U) < 0
and d∗(V,U) − u ≤ −v. As in Case 2, in any projection
Gω, there must be an SVP Pω from V to U with |Pω|ω ≤
d∗(V,U) < 0. Let R be the terminus of the last negative edge
in Pω; Pvr, the prefix of Pω from V to R; Pra, an SVP from
R to A; and Pvra, the concatenation of Pvr and Pra. Then
|Pvra|ω = |Pvr|ω + |Pra|ω ≤ |Pω|ω + |(U,C:−u,A)|ωc

≤
d∗(V,U)+max{−u,−ωc} ≤ max{d∗(V,U)−u,−ωc} ≤
max{−v,−ωc} = |(V,C:−v,A)|ωc

.

Theorem 6. When given a dispatchable ESTNU as input, the
minDispESTNU algorithm outputs an equivalent dispatchable
ESTNU having a minimal number of edges (i.e., a µESTNU).

Proof. The ESTNU output by minDispESTNU is equivalent to
the input network since: (1) all fixed waits and stand-in edges
are entailed by alternative edges or paths, (2) the dispstn
algorithm generates an equivalent set of ordinary edges, and
(3) each removed wait edge is entailed by an alternative path.

Minimality. Since Theorem 5 ensures that the output ES-
TNU is dispatchable, it suffices to show that each edge in the
output ESTNU is needed for dispatchability (i.e., its removal
would thwart dispatchability). To the contrary, suppose e is
some edge not needed for dispatchability but belongs to the
output ESTNU and, hence, was not removed. For reference,
let Go = (T , E∗

o) be the STN output by dispstn .
Case 1: e is an ordinary edge (U, δ,W). Since all stand-in

edges are eventually removed, e cannot be a stand-in edge; it
must be an original ordinary edge or one inserted by dispstn .
Since dispstn outputs a minimal dispatchable STN, and it
kept or inserted e, it follows that any vee-path P from U
to W in Go that does not use e must satisfy: |P| > δ. But
that implies that removing e from the ESTNU would yield
d∗(U, V) > δ = |e|, contradicting that e is not needed.

Case 2: e is a wait edge (V,C:−v,A). Since e was not
removed, the conditions in Lines 3-8 of markWaits must all
be false. So d∗(V,A) > −v; d∗(V,C) ≥ 0; and for all other
waits (U,C:−u,A), d∗(V,U) ≥ 0 or d∗(V,U)− u > −v.
Since e is not needed, then for each ω with ωc = y, there must
be a simple SVP Pva from V to A that does not use e, with
|Pva|ω ≤ |e|y = −v. Being simple, Pva cannot include an
edge derived from the LC edge (A, c:x,C); and if it includes
an edge derived from the UC edge (C,C:−y,A) or some
wait (U,C:−u,A), then it must be the last edge in Pva.

Case 2a: For each ω, there is an SVP Pva from V to A that
does not include any edge derived from edges labeled by C.
Then for some ω, d∗(V,A) = |Pva|ω ≤ −v, a contradiction.

Case 2b: For some ω, an SVP Pva from V to A terminates
in an edge derived from the UC edge (C,C:−y,A). Since
Pva is an SVP ending in a negative edge, all of its edges,
including the subpath from V to C, must be negative. Since
negative edges in a projection derive only from negative edges
in the ESTNU, it follows that d∗(V,C) < 0, a contradiction.

Case 2c: For some ω, a simple SVP Pva from V to A
terminates in an edge derived from another wait EU =
(U,C:−u,A). Let Pvu be the prefix of Pva from V to U .
Since the last edge in the SVP Pva is negative, all of the edges
in Pvu must also be negative. Let ω∗ be the same as ω except
that C −A = y. If the edges in Pvu all derive from ordinary
edges in the ESTNU, then |Pvu| = d∗(V,U) and, hence,
−v ≥ |Pva|ω∗ = d∗(V,U) − u, a contradiction. Therefore,
Pvu must contain one or more waits (Wi, Ci:−wi, Ai) or
UC edges (Ci, Ci:−yi, Ai) labeled by contingent TPs other
than C. For each such edge, the path from Ai to A is an SVP
with all negative edges; hence d∗(Ai, A) < 0 and so the LC
edge (Ai, ci:xi, Ci) cannot be part of any SVP ending at A.

Let AU be the set of contingent links whose activation
timepoints Ai appear in a proper prefix of any SVP in
any projection whose terminal edge derives from EU ; and
let ωm be any situation where Ci − Ai = xi for each
(Ai, xi, yi, Ci) ∈ AU , but C − A = y. Let PU

va be any
simple SVP from V to A whose terminal edge derives from
EU in Gωm , and let PU

vu be the prefix of PU
va from V to U .

Since PU
vu is simple, it cannot contain any edges labeled by

C or c. By construction, |PU
va|ωm ≤ −v, but the only la-

beled edges associated with links in AU that can appear in
PU
va are UC or wait edges. But then for any ωo that is the

same as ωm except possibly for durations of links in AU ,
−v ≥ |PU

va|ωm = |PU
vu|ωm − u ≥ |PU

vu|ωo
− u. Since the

durations of all other contingent links were arbitrary (except
for C −A = y), we get −v ≥ d∗(V,U)− u, a contradiction.
So EU can’t be the last edge of an SVP from V to U in ωo.

Finally, let A be the union of the sets AU associated with
all wait edges (U,C:−u,A) that terminate SVPs from V to A
in some situations; let ωM be any situation where Ci −Ai =
xi for all of the links in A, but C − A = y; and let P⋆

be any simple SVP from V to A in ωM . By the preceding
argument, none of the wait edges EU can be the terminal
edge of P⋆; P⋆ cannot contain any edges labeled by C or
c; and −v ≥ |P⋆|ωM . But since the only kind of labeled
edges associated with links in A that can appear in P⋆ are
UC or wait edges, it follows that in any situation ω† that is
the same as ωM except possibly for durations of links in A,
−v ≥ |P⋆|ωM ≥ |P⋆|ω† . And since the durations of all other
links were arbitrary, and P⋆ cannot contain any edges labeled
by C or c, we get: −v ≥ d∗(V,A), a contradiction.

Complexity. The time complexity of minDispESTNU is dom-
inated by the (at most) k + 1 calls to Johnson’s algorithm
whose complexity is O(mn+n2 log n), where m ≤ n2 is the
maximum number of edges in Go. Therefore, the worst-case
complexity of minDispESTNU is O(kn3).

500 1,000 1,500 2,000
103

104

105

106

Number of nodes n

Number of edges m
Morris14 FDSTNU

minDispESTNU Initial

500 1,000 1,500 2,000

0.7s

5s
15s
30s
1m

7m

25m

Number of nodes n

Execution time

minDispESTNU(Morris14)
minDispESTNU(FDSTNU)

Figure 9: minDispESTNU performance vs. network size

Empirical Evaluation
We evaluated the performance of minDispESTNU against Mor-
ris14 and FDSTNU, aiming to demonstrate: (1) the increase
in computational cost required to generate a µESTNU, and
(2) the reduction in the number of edges in the µESTNU.

Morris14 is the DC-checking algorithm proposed by Mor-
ris (2014), which we modified according to his high-level
description to enable it to generate equivalent dispatchable
networks. FDSTNU is the fast dispatchable STNU algorithm
presented by Hunsberger and Posenato (2023).

We implemented all algorithms in Java, available in version
4.12 of the CSTNU Tool of Posenato (2022), and ran them on
a JVM 21 with 8 GB of heap memory on a Linux computer
with two AMD Opteron™ 4334@3.1 GHz (6200 BogoMIPS).

For our evaluation, we used the benchmark published
by Posenato (2020). For each n ∈ {500, 1000, 1500, 2000},
the benchmark contains 30 randomly generated DC STNUs,
each having n nodes, n/10 contingent links, and about six
incident edges per node (for a total of m ≈ 3n edges).

Each DC STNU was separately fed to Morris14 and FDSTNU

to generate a pair of equivalent dispatchable ESTNUs. Both
were then fed to the minDispESTNU algorithm to check that the
resulting µESTNUs were the same. In the large majority of
cases, they were, but for a few instances, the two minimized
ESTNUs had some different edges. We discovered that si-
multaneity constraints among pairs of timepoints can result
in trivially different but equivalent minimized ESTNUs.

The diagram on the left side of Figure 9 plots the average
numbers of edges in the original STNU (black); the dis-
patchable ESTNUs generated by Morris14 (red) and FDSTNU

(blue); and the minimal dispatchable ESTNU generated by
minDispESTNU (green). The error bars show 95% confidence
intervals (difficult to see because the standard deviations are
small). The average number of edges in the minimized net-
works is about two orders of magnitude smaller than in the
ESTNUs generated by Morris14, and about one order of
magnitude smaller than in the ESTNUs generated by FDSTNU,
confirming the importance of minDispESTNU for providing dis-
patchable networks that can be more efficiently executed.

The righthand plot of Figure 9 shows the computational
cost of generating minimal dispatchable ESTNUs. The re-
sults highlight the influence of the number of edges on the
computing time, which is O(kn3) in the worst case. When
the input instances are generated by Morris14, the average

500 1,000 1,500 2,000

10

46

26

3.6

1.7

Number of nodes n

Init RTE∗ [ms]
Morris14
FDSTNU

minDispESTNU

500 1,000 1,500 2,000

1.6E6

6E3

65.7
6.91
0.48
0.04

Number of nodes n

RTE∗ time for each node [ms]

kn310−6

Figure 10: RTE∗ performance vs. network size

execution time of minDispESTNU (violet line) is an order of
magnitude higher than when the input instances are gener-
ated by FDSTNU (green line). (For n = 2000, the execution
time of minDispESTNU(Morris14) was above the 30-minute
timeout.) This difference is similar to the difference in the
average numbers of edges between instances generated by
Morris14 and FDSTNU shown in the lefthand plot.

RTE∗ is a real-time executor that can execute dispatch-
able ESTNUs efficiently (Hunsberger and Posenato 2024); an
open-source Java implementation is available in CSTNU Tool
v. 1.42 (Posenato 2022). Figure 10 demonstrates the impact
of the number of edges on the performance of the ESTNU
executor RTE∗. For each benchmark instance, equivalent
dispatchable ESTNUs were generated by Morris14, FDSTNU,
and minDispESTNUFDSTNU. We configured RTE∗ to schedule
timepoints using an early execution strategy for controllable
timepoints and set up the environment to return the mid-
dle value for each contingent duration. The lefthand plot of
Figure 10 shows the average execution time needed to ini-
tialize the executor. The time depends in part on the number
of edges in the network. The execution time when the in-
put is from Morris14 is around double that when input is
from minDispESTNUFDSTNU. In contrast, the number of edges
of the Morris14 instances is around two orders of magnitude
greater than the number of edges of the minDispESTNUFDSTNU

ones. This is because the time necessary to initialize some
general data structures dominates the time to initialize the
data structure relative to the edges. The righthand plot of Fig-
ure 10 shows the average time required by RTE∗ to schedule
a single timepoint or to manage the occurrence of a contin-
gent one. On average, the time RTE∗ takes to a value to a
timepoint of a minDispESTNUFDSTNU instance is smaller by two
orders of magnitude than the time it takes to assign a value
to a timepoint of a Morris14 instance.

Conclusions
This paper presented a new algorithm for generating equiva-
lent dispatchable ESTNUs with a minimal number of edges.
The empirical evaluation demonstrated its effectiveness both
in reducing the number of edges and in improving the per-
formance during real-time execution. The formal analysis
proved the algorithm’s correctness.

References
Cairo, M.; Hunsberger, L.; and Rizzi, R. 2018. Faster Dy-
namic Controllablity Checking for Simple Temporal Net-
works with Uncertainty. In 25th International Symposium
on Temporal Representation and Reasoning (TIME-2018),
volume 120 of LIPIcs, 8:1–8:16.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2022. Introduction to Algorithms, 4th Edition. MIT Press.
ISBN 978-0-262-04630-5.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence, 49(1-3): 61–95.
Hunsberger, L.; and Posenato, R. 2022. Speeding up the
RUL− Dynamic-Controllability-Checking Algorithm for
Simple Temporal Networks with Uncertainty. In 36th AAAI
Conference on Artificial Intelligence (AAAI-22), volume 36-9,
9776–9785. AAAI Pres.
Hunsberger, L.; and Posenato, R. 2023. A Faster Algo-
rithm for Converting Simple Temporal Networks with Uncer-
tainty into Dispatchable Form. Information and Computation,
293(105063): 1–21.
Hunsberger, L.; and Posenato, R. 2024. Foundations of
Dispatchability for Simple Temporal Networks with Un-
certainty. In 16th International Conference on Agents and
Artificial Intelligence (ICAART 2024), volume 2, 253–263.
SCITEPRESS. ISBN 978-989-758-680-4.
Morris, P. 2006. A Structural Characterization of Tempo-
ral Dynamic Controllability. In Principles and Practice of
Constraint Programming (CP-2006), volume 4204, 375–389.
Morris, P. 2014. Dynamic controllability and dispatchabil-
ity relationships. In Int. Conf. on the Integration of Con-
straint Programming, Artificial Intelligence, and Operations
Research (CPAIOR-2014), volume 8451 of LNCS, 464–479.
Springer.
Morris, P. 2016. The Mathematics of Dispatchability Revis-
ited. In 26th International Conference on Automated Plan-
ning and Scheduling (ICAPS-2016), 244–252.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI-2001), volume 1, 494–
499.
Morris, P. H.; and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. In 20th National Conference on
Artificial Intelligence (AAAI-2005), 1193–1198.
Nilsson, M.; Kvarnstrom, J.; and Doherty, P. 2014. Efficien-
tIDC: A faster incremental dynamic controllability algorithm.
In 24th International Conference on Automated Planning
and Scheduling (ICAPS-14), 199–207.
Posenato, R. 2020. STNU Benchmark version 2020. Last
access 2022-12-01.
Posenato, R. 2022. CSTNU Tool: A Java library for checking
temporal networks. SoftwareX, 17: 100905.
Stedl, J.; and Williams, B. 2005. A fast incremental dy-
namic controllability algorithm. In ICAPS Workshop on Plan
Execution: A Reality Check, 69–75.

Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
Transformation of Temporal Plans for Efficient Execution. In
15th National Conf. on Artificial Intelligence (AAAI-1998),
254–261.

