
WiChoose: Practical Network Selection for Wi-Fi
Vehicle-to-Infrastructure Communication

1st Rui Meireles
Department of Computer Science

Vassar College
Poughkeepsie, NY, USA

rui.meireles@vasar.edu

2nd Vinı́cius Abrunhosa
Instituto de Telecomunicações

University of Porto
Porto, Portugal

abrunhosavinicius@gmail.com

3rd Ana Aguiar
Instituto de Telecomunicações

University of Porto
Porto, Portugal
anaa@fe.up.pt

Abstract—The proliferation of Wi-Fi hotspots enables oppor-
tunistic vehicular access. In urban areas there can be multiple
networks in range, necessitating a choice. Network heterogeneity
and fast vehicular mobility make this difficult. We present
WiChoose, which is both a practical network selection system
and a framework for the evaluation of selection strategies. It
monitors available networks and decides how to switch between
them, in order to maximize data transfer. Vehicle location is
a key network performance determinant, and current mobility
predicts future location. We have thus previously proposed
clustering performance data by mobility features, to help forecast
future network performance given the vehicle’s current mobility.
WiChoose refines this strategy by additionally prioritizing recent
observations over older ones. As a testing framework, WiChoose
is highly configurable and extensible. It can run multiple selection
strategies in parallel and measure actual throughput, for compar-
ison purposes. We used WiChoose to experimentally evaluate our
proposed scheme in a realistic vehicular setting featuring IEEE
802.11n and ad networks. It successfully alternated between the
two networks, transferring 95 % of the total amount of data that
a future-seeing oracle scheme could have.

Index Terms—C.2.1.k Wireless communication, C.2.8.c Mobile
communication systems

I. INTRODUCTION

Vehicles have become computers on wheels. They increas-
ingly require network connectivity for navigation, over-the-air
updates, telemetry, and more. Vehicle-to-Infrastructure (V2I)
communication currently uses mostly cellular connections,
which are becoming ever more strained. Thus, Wi-Fi hotspots
accessible from the street in urban areas create a good op-
portunity for data offloading. A large-scale 2016-19 study [2]
performed in the city of Porto, Portugal, found 80 % of streets
to be covered by one or more public hotspots.

In cities it is common for multiple networks to be available,
which poses the question of which one to use at any given
time. We focus on this question, specifically for data-intensive
but delay-tolerant applications, such as the download of over-
the-air software updates, or the upload of vehicle sensor data
to the cloud for data mining or machine learning purposes [3].

This work was supported by: i) the European Union/Next Generation
EU, through Programa de Recuperação e Resiliência (PRR) [Project Nr. 29:
Route 25 (02/C05-i01.01/2022.PC645463824-00000063)]; ii) Fundação para a
Ciência e Tecnologia, I.P. (FCT) under Project UIDB/50008/2020 [1], funded
by FEDER through COMPETE.

Under such a scenario, clients will want to maximize the
total amount of data transferred over Wi-Fi, which equates to
maximizing the sum of throughputs over time. The problem
of picking the best network can then be divided into:

1) Estimating current throughput for each network.
2) Forecasting throughput evolution over time.
3) Deciding when and to what network to switch.

Estimating throughput is challenging. For a given network,
signal strength determines the achievable data rate. However,
different Wi-Fi standards yield different data rates for a given
signal strength. Also, since the wireless medium is shared,
network load will affect how data rate translates to throughput.
One option is to measure throughput directly with probe traffic,
but that adds unwanted load. Previously [4], we applied Sym-
bolic Regression (SR) to a set of throughput measurements
to find estimation formulas based on passively-observable
variables, such as signal strength and user count. Testing
showed them to be competitive against more sophisticated
models, while being computationally inexpensive.

After estimating current throughput, we need to forecast its
evolution over time. Intuitively, location is a good throughput
predictor and, combined with velocity, a good predictor of
future location. Thus we introduced a family of algorithms [5]
that forecast future throughput as the mean of previously-
observed throughputs given the current set of mobility features,
which include the vehicle’s position and direction of move-
ment. A trace-based evaluation [4] compared them favourably
against traditional domain-agnostic time series algorithms such
as Autoregressive Integrated Moving Average (ARIMA) and
Vector Autoregression (VAR).

Once throughput has been forecast for all networks, network
selection can occur. We devised an algorithm that computes
the optimal switching schedule given the forecasts. In a trace-
based evaluation [5], it created schedules capable of offloading
90 % of the data of a theoretical oracle algorithm with access
to real future throughput values.

We now evolve and implement these components to create a
practical network selection system we call WiChoose. Unlike
our previous work, which ran offline, WiChoose is capable of
picking networks on-the-fly, at runtime. It is written in C++
and runs on commodity Linux-based devices.



Additionally, WiChoose is built as a framework for exper-
imental evaluation of network selection schemes. Its object-
oriented design is highly parameterizable and extensible, al-
lowing for different selection strategies to be added and tested
in parallel. Further, it collects actual throughput measurements
for each network, supporting quantitative comparison between
schemes.

We leveraged WiChoose to experimentally assess our own
network selection strategy. We drove a circuit around a simu-
lated stoplight while choosing between two different Wi-Fi
networks, one 802.11n and one 802.11ad. These networks
offer different trade-offs between communication range and
throughput. WiChoose proved capable of switching between
them effectively, offloading 95 % of the upper bound amount
set by a theoretical all-knowing oracle scheme.

In summary, we make the following contributions:
• Describe our network selection process and prove it

makes optimal choices, given the provided throughput
information (§II).

• Present WiChoose, a practical Wi-Fi-based V2I network
selection system and testing framework (§III).

• Use WiChoose to experimentally evaluate our network
selection strategy on a realistic vehicular scenario (§IV).

II. NETWORK SELECTION WORKFLOW

This section details our network selection process, which
consists of estimating current throughput, forecasting its evo-
lution, and then using the forecasts to pick the network that
can transfer the most data.

A. Throughput estimation
Our goal for throughput estimation was to create a com-

putationally inexpensive model that relies only on passively-
observable variables. To this end we took an experimental
vehicular dataset and applied Symbolic Regression (SR) to
derive throughput formulas for different Wi-Fi standards.

The dataset used [6] pertains to experiments where a vehicle
drove a circuit around multiple static and colocated Access
Points (APs), including 802.11n and 802.11ad ones, while
downloading data from them. It consists of a 1 Hz-resolution
log where each entry features a throughput measurement, the
vehicle’s coordinates and speed, a Received Signal Strength
Indicator (RSSI), and the number of active clients.

Symbolic regression consists of searching the parameter
space for the combination of state variables, operators and
functions that best fits the data. To prevent overfitting, fit-
ness was defined as the combination of Mean Absolute Er-
ror (MAE) and number of expression terms. The GPTIPS2
genetic-programming algorithm [7] was used, yielding:

ˆtputn = 0.7111 ∗RSSI − 2.479 ∗Nusers

+ 11.88 ∗ e−Nusers + 62.02
(1)

ˆtputad = 0.7334 ∗RSSI + 47.74 ∗ sin(s ∗RSSI)

− 112.6 ∗ tanh(s)1/4

− 115.8 ∗ tanh(cos(s)) ∗ log(Nusers)
2 + 387.9.

(2)

ˆtputn and ˆtputad are the throughput estimates for 802.11n
and ad, in Mbps; RSSI is in dBm; s is the vehicle’s speed
in m/s; and Nusers the number of active users.

B. Throughput forecasting

To support network selection our goal is to, at time t,
forecast throughput for t+ 0, t+ 1, . . ., t+winf − 1, where
winf is the length of the forecasting window of interest1.

Position is a key throughput indicator. For a given network,
signal strength dictates the achievable data rate and hence, in
a single-user environment, throughput. The vehicle’s position
defines distance to the AP and topography-derived line-of-
sight conditions, which together determine signal attenuation,
and thus throughput. Current mobility predicts future position
and therefore, indirectly, also future throughput.

Our forecasting approach, which we have shown to perform
well [4], is to cluster historical throughput data by a set of
mobility features and then average the samples to compute
a forecast. We codify mobility as the combination of the
following features: road identifier (R), direction of movement
(D), position relative to the AP (P), and binary speed indicator
(S), i.e., low/stopped or high/moving. The latter is useful for
unstable networks that are only usable at low speeds, e.g.,
802.11ad. We call this an MRDPS clustering, after its different
components.

Since WiChoose currently targets a single-user scenario,
these features suffice. However, the model can easily be
expanded to account for the effect of channel sharing among
multiple users. For example, by adding channel busy ratio, or
user count, to the predictor feature set.

Each MRDPS cluster is split into a number of buckets
equal to the forecasting window length. For example, given
a 10 s window, a cluster cx would contain ten buckets cxbt+0

through cxbt+9. Bucket cxbt+i would hold throughput samples
observed i seconds after the vehicle’s mobility matched cluster
cx, as depicted in Fig. 1.

At each time t, a new estimate is made and added to the
corresponding buckets of the clusters matching the client’s
mobility over the last winf seconds. Thus, if the vehicle’s
mobility matched cluster cx at t − 2 and cluster cy at t − 1,
the new value would be added to buckets cxbt+2 and cybt+1.

To the previous clusters that summarize the entire system’s
history, we add a special ”current cluster”, ccur. It holds

1The window starts at t+ 0 to also support measurement-based decisions.
While an estimate for time t can be obtained at time t, a measurement can
only be obtained at time t+ 1. Hence the need to forecast for t+ 0.

Cluster cx: road id: 1, position: 10m east of AP, heading: west, speed: low

Bucket Contents
bt+0 throughput values seen 0 s after cluster match
bt+1 throughput values seen 1 s after cluster match

bt+9 throughput values seen 9 s after cluster match
…

Fig. 1: Example MRDPS cluster internal structure.



the throughput samples collected since the vehicle’s mobility
started matching the cluster it presently does. For example, if
the matched cluster was cx at time t−2, and then cy at t−1 and
t, ccur will contain samples from these last two timestamps,
and nothing else. As as consequence of its definition, ccur is
reset every time the matched cluster changes. This cluster is a
refinement relative to prior work that lets us privilege newer
data over older data in the forecasting process, e.g., to capture
a transient line-of-sight obstruction.

The throughput forecast for time t+ i is determined by:
1) Finding the right bucket b. If the special current cluster

ccur contains samples for offset i, then b = ccurbt+i.
Otherwise, current mobility information is used to find
the matching regular cluster, cx, and b = cxbt+i.

2) Computing the forecast as the average of all samples in
bucket b. Currently WiChoose supports arithmetic mean
and simple exponential moving average (i.e., one history
term), but any other summarization function could be
employed. If no data exists, zero is forecast.

C. Network selection decision

The aim is to select networks in a way that maximizes the
total amount of data offloadable over Wi-Fi. To this end, each
passing second we use the current throughput estimates and
forecasts over the forecasting window winf to estimate the
amount of data offloadable over that period for each network.
Ultimately, the network with the largest estimate is chosen.

Let t0 be the current time. The maximum offloadable data
from time ti on (i ≥ 0), given a current network cnet, is:

Datacnet[ti] =


Tputcnet[ti]
+
max
∀onet

fd(cnet, onet, ti) if i < winf

0 if i ≥ winf

.

(3)
Datacnet[ti] is the sum of the estimated current throughput

for cnet, Tputcnet[ti], with the maximum amount of data
that can be offloaded in the future. The latter is given by

maximizing function fd(cnet, onet, ti), which represents the
future offloadable data if a switch from current network cnet to
network onet is started at time ti, over the available networks.
It is defined as:

fd(cnet, onet, ti) =

{
Dataonet[ti+1+ot] if onet ̸= cnet
Datacnet[ti+1] if onet = cnet

.

(4)
The first case represents an actual network switch, which

implies an outage period of ot seconds, hence why the same
amount of time is skipped in the computation. The second
case corresponds to staying on the current network, in which
case data transfer continues uninterrupted.
Datacnet[ti]’s recursive definition lends itself to an effi-

cient dynamic programming-based implementation that starts
by computing Datacnet[twinf−1] and then works backwards
towards Datacnet[t0], saving the intermediate values for later
use in the process. This is exactly what WiChoose does, as
depicted by the pseudocode in Alg. 1.

The procedure takes in the current network cnet, the
forecasting window length winf , the number of networks
nnets (each network is uniquely identified by a number in
[0, nnets−1]), and a winf×nnets matrix of throughput values
tputFore. tputFore[ti][net] holds the estimate/forecast for
network net at time ti (assume indices range from t0 to
twinf−1 for the matrix’s first dimension, and from 0 to
nnets− 1 for the second).

The code loops down from twinf−1 to t0. For each time ti it
goes through each network net, computes Datanet[ti] as per
Eq. 3, and saves the result in a dynamic programming memory,
data. This means that, when processing ti, the values for ti+1,
ti+2, etc, are all available. As it goes through each (ti, net)
pair, it also records which network should be used next in
order to maximize the amount of offloadable data, nextNet.

Once Datacnet[t0] has been computed, which occurs when
ti = t0 and net = 0, processing stops and the next network
for that combination is returned. Note that termination is
guaranteed because the {ti = t0, net = 0} combination is
necessarily generated by the loops of lines 6 and 7.

Moreover, we can prove Datanet[ti], ∀net, ti, is correctly
computed, given the input data, by induction on time ti:

1 i n p u t s : i n t cne t , i n t winf , i n t o t , i n t n n e t s , i n t [ ] [ ] t p u t F o r e
2 o u t p u t : i n t
3 beg in
4 d a t a ← (winf + o t +2) × n n e t s m a t r i x o f z e r o s # o f f l o a d a b l e da ta memory f o r each ( t ime , ne twork ) p a i r
5 f o r ti from twinf−1 downto t0 : # f o r each t i m e i n f o r e c a s t i n g window ( r e v e r s e o r d e r )
6 f o r n e t from 0 upto n n e t s −1 : # f i n d o f f l o a d a b l e da ta f o r each ( t ime , ne twork ) p a i r
7 maxFdata ← d a t a [ ti+1 ] [ n e t ] # f u t u r e o f f l o a d a b l e da ta i f we s t a y i n ne twork
8 n e x t N e t ← n e t # s t o r e s ne twork y i e l d i n g maxFdata
9 f o r o n e t from 0 upto n n e t s −1 : # check o t h e r n e t w o r k s

10 f d a t a O n e t ← d a t a [ ti+1+ot ] [ o n e t ] # f u t u r e o f f l o a d a b l e da ta i f we i n i t i a t e s w i t c h t o o n e t
11 i f f d a t a O n e t > maxFdata : # u pd a t e f u t u r e da ta i f s w i t c h i n g t o o n e t i s b e t t e r
12 maxFdata ← f d a t a O n e t
13 n e x t N e t ← o n e t # n e x t ne twork i s now o n e t
14 d a t a [ ti ] [ n e t ] ← t p u t F o r e [ ti ] [ n e t ] + maxFdata # save o f f l o a d a b l e da ta v a l u e
15 i f ti == t0 and n e t == c n e t : # i s t h i s t h e ( t ime , ne twork ) p a i r o f i n t e r e s t ?
16 r e t u r n n e x t N e t
17 end

Alg. 1: Throughput forecasts-based network selection algorithm.



Base case (ti = twinf−1): Since the time horizon is limited
to t0 + winf − 1, all choices yield the same amount
of data, Tputnet[twinf−1]. Our algorithm correctly com-
putes this. Since the data matrix is zero-filled, lines 7
and 10 will set maxFdata to zero. Line 14 will then set
Datanet[twinf−1] = Tputnet[twinf−1] + 0 as desired.

Inductive case (ti → ti−1): Assume ∀net, Datanet[ti] has
been computed correctly and we are now computing
Dataanet[ti−1] for a network anet. Dataanet[ti−1] is
set in line 14 to be Tputanet[ti−1] +maxFdata, which
agrees with Eq. 3, as long as maxFdata is equal to
max∀onet fd(anet, onet, ti−1). maxFdata is initialized
to Dataanet[ti] in line 7. We now distinguish two cases:

1) Staying on the current network is optimal, meaning
Dataanet[ti] ≥ Dataonet[ti+ot], for ∀onet ̸= anet.
By our inductive hypothesis, all of these data estimates
will be correct, therefore the condition of line 11 will
always be false, and maxFdata will remain equal to
Dataanet[ti], which is correct.

2) Switching networks is optimal, i.e., ∃dnet ̸= anet such
that dnet = argmaxonet fd(anet, onet, ti−1).
Since the loop of line 9 goes through all networks, it
will go through dnet. By our inductive hypothesis, all
data estimates for times ≥ ti will be correct and thus
line 11’s conditional will ensure that maxFdata is set
to Datadnet[ti+ot], which is the desired value.

calculated, and consequently so will Dataanet[ti−1].

The correct computation of Datanet[ti],∀net, ti, implies
the same for the specific case of Datacnet[t0]. The next
network returned is thus optimal, i.e., the one yielding the
maximum future offloadable data.

Running time is O(winf × nnets2), as dictated by the
nested loops in lines 5-6. Spatial complexity is determined by
the size of the dynamic programming memory data in line 4,
which is Θ((winf +ot)×nnets). Since the expected number
of networks is small, this is a practical solution.

III. WICHOOSE DESIGN AND IMPLEMENTATION

This section details WiChoose’s structure and features.

A. Design

WiChoose’s main requirements were: i) be able to choose
networks at runtime using the logic from §II, and ii) act as
a framework to support the evaluation of different selection
schemes. In particular, we wanted to compare our scheme
against one that used throughput measurements instead of es-
timates, and against the theoretical optimum. This necessitated
the ability to measure actual throughput, and run multiple
selection schemes in parallel.

These goals, along with universal ones such as simplicity
and modularity, led us to an object-oriented design. Its archi-
tecture is depicted in Fig. 2. The system has two nodes:
Mobile client: Responsible for choosing the best network

according to the available performance information, and
for sending data to the access point.

Access point: Responsible for receiving data and measuring
throughput. Further, it sends the latter as feedback to the
client, enabling measurement-based schemes.

Each node runs multiple processes, which communicate
through shared memory. We now describe each of them.

1) Global Navigation Satellite System (GNSS) daemon:
The GNSS daemon is responsible for providing both nodes
with mobility and timing information. It does this by parsing
the raw National Marine Electronics Association (NMEA)
0183 sentences generated by a GNSS receiver, and writing the
extracted information to shared memory. The observer pattern
is used to notify interested parties of changes.

2) Data receiver: Runs on the access point. It executes
one data-receiving thread per available network interface. The
number of bytes received over each of them during each
second is logged and periodically sent to the mobile client
as feedback. Both feedback message frequency and length of
throughput history included in each are configurable.

3) Network selector: This mobile-client process gathers
throughput data and uses it to pick networks. It comprises:

Mobile client Access point

Sender

Network selector

GNSS daemon

GNSS info 
shared 
memory

GNSS daemon

Receiver

Data receiver

Feedback 
sender

Data
over UDP

Throughput info.

GPS
time 

Network 
choice 

shared mem.
Choice maker

Channel 
monitor

Feedback 
receiver

Throughput 
estimator

Net. 
performance 

database

Data sender

Channel
quality

Chosen 
network

Estimated throughput

Historical net. perf.

Measured
throughput

Measured
throughput

Chosen 
network

GNSS daemon

GNSS info 
shared 
memory

GNSS daemon

C
ur
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Fig. 2: WiChoose’s combined logical and physical system architecture.



a) Network performance database:: Stores throughput
measurements and estimates for forecasting. Data is clustered
by mobility features, as per the MRDPS algorithm of §II-B.

For performance and simplicity, we created a hash table-
based in-memory database. The keys are mobility features and
the values are clusters of throughput data, as per Fig. 1.

Data persistence is achieved by writing the database to a file
prior to process termination, and reading it back upon restart.
The file is human-readable, to facilitate debugging.

All database operations are specified in an abstract interface,
allowing for a different implementation, e.g., a relational
database, to be easily swapped in if desired.

b) Throughput estimator:: A thread that, once a sec-
ond, estimates throughput for each network according to the
formulas in §II-A, and saves the results to the database.

Estimation requires three inputs:
Nusers: Set to 1 as the prototype features a single client node.
s (speed): Taken directly from the GNSS shared memory.
RSSI: For simplicity, WiChoose assumes a 1:1 relationship

between networks and network interfaces. Therefore
we read from file /proc/net/wireless, which, on
Linux systems, reports RSSI for each interface.
c) Feedback receiver:: A thread that listens for through-

put feedback messages from the data receiver node, extracts
any new information, and forwards it to the database.

d) Choice maker:: A thread that, once a second, applies
the algorithm from §II-C to find the network that maximizes
the amount of offloadable data within the lookahead period.
The algorithm is run twice: one informed by forecasts based
on throughput estimates, and another based on measurements.
Both are retrieved from the database. Results are written to
shared memory for the data sender process to read.

Both strategies are implemented as subclasses of a common
superclass, with variance coming from their different imple-
mentations of a set of polymorphic methods. More decision
strategies can be added by writing new subclasses.

4) Data sender: Streams data to the receiver over UDP, to
prevent the influence of TCP flow and congestion controls.
Since we want to measure throughput, it sends at the fastest
possible rate. And as content doesn’t matter, the data source
is an uninitialized buffer. The process can operate in one of
two modes, depending on configuration:

Stream over all: Sends data over all available interfaces,
using a separate thread for each. Meant for evaluation.

Stream over best: Sends data over the best interface, as per
shared memory. Meant for a ”production” setting.

B. Implementation

Due to their low cost, we wanted WiChoose to be able to
run on commodity Linux-based embedded systems. This led
us to choose C++17 as the implementation language, given its
low resource use and wide availability.

We ran WiChoose on TP-Link Talon AD7200 [8] routers.
These arm-based devices feature multiple Wi-Fi radios in
a compact package, simplifying logistics. Since the factory
Operating System (OS) is not user-programmable, we replaced
it with LEDE-AD7200 [9], a Talon-customized version of the
popular OpenWrt GNU/Linux distribution [10].

LEDE-AD7200 was thus the OS we targeted. However,
there should be no issues compiling and running WiChoose
on other Linux-based systems. For maximum compatibility,
besides the C++ standard library, the code only depends
on the ubiquitous pthread (libpthread) and real-time (librt)
libraries. For multi-threading and shared-memory operations,
respectively. Additionally, our makefiles support not just arm
LEDE-AD7200 targets, but also native-architecture ones.

For ease of use, all runtime parameters are read from a
single configuration file: /etc/wichoose.conf.

WiChoose’s source is open and available on GitLab [11].

IV. EXPERIMENTAL EVALUATION

This sections describes our evaluation’s setup and results.

A. Setup

Two main goals motivated our experimental setup: (i) exer-
cise the system’s ability to hop between networks to maximize
data transfer, and (ii) logistical simplicity.

We settled on two networks: one 802.11n, and one ad. The
former offers long range and stable but low throughput. The
latter the exact opposite. The experiments were done at an
industrial park near Porto, Portugal. The AP for both networks
was placed next to a crosswalk and the client vehicle drove
a circuit around it, as per Fig. 3. Half the times the client
approached from the northwest, it stopped at the crosswalk
for ∼40 s, to simulate a red stoplight. The other half it drove

220 m

N

S

E

W

Throughput
feedback

Access
Point

Data

Fig. 3: Physical experiment setup. Access point coordinates: 41.31562042, -8.291383743. Imagery © 2024 Airbus.



on through, simulating a green light. We drove a total of 20
laps, in around 30 min. Speed ranged from 0 to 50 km/h.

Talon AD7200 multi-radio routers we used for both AP
and client. The AP was placed on a tripod. The client, on
the roof of a passenger car. GNSS receivers were equipped,
for localization and time synchronization. The forecasting
database started out empty. Finally, Tab. I summarizes the most
relevant WiChoose configuration parameters.

TABLE I: System configuration used in the experiments.

Category Parameter Value
Position resolution (m) 10
Direction resolution (°) 180

Low/high speed threshold (km/h) 20
Forecast window length winf (s) 40

Throughput
forecasting

Exp. moving avg. smoothing factor α 0.3
Network selection Network switch outage time ot (s) 1

Sending frequency (Hz) 2Throughput
feedback sender Measurement window length (s) 10

In addition to the estimate-based scheme from §II, we ran a
variation that uses throughput measurements for forecasting, as
a comparison point. Moreover, those throughput measurements
were logged so we could also compare against:
Optimal: An oracle scheme that uses accurate and complete

information to find the perfect network switching sched-
ule. Represents a performance upper bound.

11n-only: A scheme that only uses the n network, due to its
stability. Represents a performance lower bound.

B. Results

Tab. II lists the amount of data offloadable by each scheme.
There is much to gain by switching networks, as the 85 %

increase from 11n-only to optimal attests. The estimate scheme
was very effective, yielding 95 % of the optimal. Interestingly,
despite having access to real measured throughput values and

TABLE II: Total offloadable data comparison.

Scheme Optimal 11n-only Meas.-based Est.-based
Data (GB) 27.88 15.09 26.01 26.46

Data (% of opt.) 100 54.12 93.29 94.91

not estimates, the measurement variant performed slightly
worse, at 93 %.

To understand these numbers, let us inspect the schemes’
behavioral differences. Fig. 4a shows the network allocation
distribution, in aggregate, while Fig. 4b does the same by client
location. The optimal scheme only uses the ad network when
very close to the AP. The estimate scheme slightly overuses the
ad network, which accounts for its performance gap relative
to the optimal. The measurements scheme, on the other hand,
matches the optimal aggregate allocation quite well. Thus, its
performance deficit must be timing related.

Fig. 5 provides further evidence. It depicts a timeline slice
captured as the client approached the AP on a red light and
ad connectivity improved. The optimal scheme switched to ad
once and stayed there. The measurement scheme also, but a
little too late. The estimate scheme switched to ad twice.

Consider now the root causes of these differences. First,
timing. Since the optimal scheme knows the future, it can time
switches perfectly. The estimate scheme can not. However, it
can quickly react to RSSI changes. In contrast, the measure-
ment scheme suffers from inherent extra delay: throughput
measurement for time t can only end upon the transition to
time t+ 1, and then it has to be sent over to the client.

The cause for the estimate-based scheme’s slight ad overuse
was determined to be estimation error. The mean throughput
increase offered by ad was measured as 34 Mbit/s, but esti-
mated to be 61 Mbit/s, or 80 % more. To help pinpoint the
cause, Fig. 6 shows the empirical cumulative distribution of
the relative estimation error for the two networks. Most of the
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Fig. 4: Experimental results - network allocation for each evaluated scheme, by time and location.
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Fig. 5: Experimental results - network choice timeline slice.

error stems from an underestimation of the 802.11 n network’s
performance. This is understandable given that the estimation
model was trained on a dataset generated with significantly
lower-performing 802.11n hardware.

Ultimately, the close-to-optimal overall performance of the
estimate scheme is evidence that, as long as the ranking of
network performances is unaffected, it copes with estimation
error very well.

The dataset resulting from our experiments is available on
Gitlab [11] for further analysis.

V. RELATED WORK

This paper builds upon our earlier work on throughput
estimation and forecasting [4], [5], and network selection [5]
algorithms, detailed in §II, and is thus most closely related to
it. In this section we explore related work by other authors.

One way to reduce the load vehicles place on their cellular
connections is to optimize their use. For example, Sliwa et
al. [12] proposed a scheme that schedules transmission of
delay-tolerant traffic for times that avoid channel contention.
We pursue the alternative of using public Wi-Fi networks to
opportunistically offload data. Multiple experimental studies
have shown this to be feasible. The previously mentioned
Porto, Portugal study by Aguiar et al. [2] confirmed the
availability of public hotspots on the majority of streets of
the city. The usability of such hotspots was confirmed by a
large multi-city study [13], which reported median connection
times from 9 s for Paris and Macao, to 22 s for Los Angeles.
Furthermore, they found that up to 1 GB/h can be offloaded
from a moving vehicle in this manner.

The growing relevance of V2I Wi-Fi communication is
highlighted by the recent creation of an automotive topic
interest group within the IEEE 802.11 working group [14].

Vehicular data offloading has been studied extensively.
Cabernet [15] was pioneering. It features a streamlined net-
work association procedure to maximize transfer time, and a
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Fig. 6: Experimental results - throughput estimation error.

custom transport protocol that improved performance by re-
moving TCP’s assumption that losses always mean congestion,
which is untrue for wireless environments. In terms of network
selection however, it is very simple, connecting to the first
open AP it finds, and staying as long as possible. WiChoose
could therefore be added to Cabernet to improve its network
selection. Wiffler [16] is a system that combines both cellular
and Wi-Fi connections, offloading delay-tolerant data to Wi-
Fi. Again, it features no particular Wi-Fi network selection
scheme, so WiChoose would complement it well.

A more recent work, X-Fi [13], focuses on efficient of-
floading using provider-managed Wi-Fi networks that require
authentication. It uses signal strength as its network selection
heuristic. In a diverse scenario featuring multiple Wi-Fi stan-
dards and loads, this is insufficient. Work by Giannoulis et
al. [17], and Deshpande et al. [18] proposed using historical
data to guide selection, but relied solely on signal quality as
a performance indicator. It did not consider mobility.

Energy consumption has also been considered a network
selection metric for multi-radio technology environments [19],
[20]. That does not make sense for WiChoose, as it focuses
specifically on Wi-Fi, and vehicles are not energy constrained.

Ndashimye et al. [21] proposed a mobility-aware AP selec-
tion scheme. In it the vehicle is given the location and range of
surrounding APs, and uses its movement vector to determine
when to switch APs in order to remain in communication
range. However, it unrealistically assumes all APs provide the
same throughput and have fixed circular ranges.

Multiple works [22]–[24] have formulated network selection
as a Markov Decision Process (MDP). In an MDP, at each
point the agent (in this case vehicle) picks an action: to stay
on the current network or switch to a different one. The action
takes the system from one state to another, with the end state
being probabilistically determined by the previous state and
action combination. Each state transition is accompanied by
a reward. Solving the MDP equates to finding an action for
each possible state, such that the overall reward is maximized.



Despite the different formulation, the end goal is similar to that
of WiChoose, where throughput is the reward.

The MDP work closest to ours is that of Mushahid et
al. [24]. Realizing that the state transition probabilities are a
priori unknown they used reinforcement learning to solve the
MDP, and, realizing the importance of mobility, made location
and speed part of the MPD state. However, they did not include
direction of movement, a key predictor [5]. They also did not
evaluate their scheme experimentally.

VI. CONCLUSIONS

We presented WiChoose, a practical system for online Wi-Fi
network selection, and a testing framework for such selection
schemes. Our proposed strategy hinges on estimating cur-
rent network throughput from passively-observable variables.
Estimates are clustered by the mobility features observed
at the time they were made. The clusters are then used to
forecast throughput evolution. Finally, the network forecast to
maximize the amount of transferable data is chosen.

We experimentally evaluated this estimation-based scheme
with WiChoose, in a realistic-mobility scenario featuring two
networks with contrasting ranges and throughputs. It proved
very effective, achieving 95 % of the theoretical optimum, and
counter-intuitively beating a measurement-based scheme, due
to its faster response to changes in channel conditions. This
is remarkable given that it doesn’t introduce any probe traffic
onto the network.

As a testing framework, WiChoose paves the way for future
larger-scale experiments with more selection strategies, clients,
networks, and mobility patterns. Another interesting future
research avenue is to expand the scope of WiChoose to
include the issues of network association, authentication, and
handover, with the goal of creating a complete Wi-Fi solution
for V2I communication.
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